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ABSTRACT

For the first time we subject the Hoyle-Narlikar theory with creation of matter and a variable
gravitational constant G, to the following cosmological tests: the magnitude versus z relation,
the N(m) versus m relation, the metric angular diameters versus z relation, the isophotal angles
versus z relation, the log N-log S radio source count, and finally the 3 K radiation.

It is shown that the theory passes all these tests just as well as the standard cosmology, with
the additional advantage that the geometry of the universe is uniquely determined, with k£ = 0.

It is also interesting to note that the variability of G affects the log N-log S curve in a way
similar to the density evolution introduced in standard cosmologies. The agreement with the
data is therefore achieved without recourse to an ad hoc density evolution.

Subject headings: cosmology — gravitation

I. INTRODUCTION

In 1964 Hoyle and Narlikar (HN hereafter) proposed a gravitation theory that tried to implement the Machian
view that the inertia of a particle is due to the rest of the particles in the universe (Hoyle and Narlikar 1964).
Subsequently, the theory was widened to include the possibility of positive and negative inertial coupling constants
(HN 1972a) as well as the possibility of creation of matter (HN 1972b). Applications of the basic features of the
theory to spacetime singularities, to anomalous redshifts, and to the cosmic microwave background have been
discussed elsewhere (Kembhavi 1979; Narlikar 1977; Hoyle 1975).

From the observational point of view, the theory presents novel features. For example, the prediction of a
variable gravitational constant G has many observable implications, especially in the field of geophysics (Hoyle
1972; Wesson 1978).

In this paper we shall, however, be concerned with the performance of the HN theory (HN 1972b) in the cosmo-
logical framework. We shall in fact subject the predictions of the HN theory to the following tests: the magnitude
versus z relation, the number count N(m) versus m for QSOs, the metric angular diameter versus z relation, the
isophotal angles versus z relation, the log N versus log S radio source count, and finally the 3 K radiation. The
last five tests had never been performed before on this cosmology. The m versus z test was attempted by Barnothy
and Tinsley (1973), but, as will be shown later, their analysis is invalid.

The conclusion of this paper is that in all the above observational tests the HN theory fares equally well as the
standard cosmology, with the following additional advantages.

First, the HN cosmology is uniquely specified by the curvature parameter k = 0 and the deceleration parameter
9o = 1, and therefore makes clear parameter-free predictions about the large-scale structure of the universe.
Second, the variability of G affects the log N-log S curve of radio sources in a way similar to the density evolution
introduced in standard cosmologies. The agreement with the data is therefore achieved in this cosmology without
recourse to an ad hoc density evolution.

It cannot be inferred from this analysis, however, that the gravitational constant must necessarily vary with
epoch. We shall limit ourselves to concluding that a time-varying G, in a cosmological framework that implements
Mach’s principle, is perfectly compatible with the present observational data.

The first part of the following discussion is concerned with the basic features of the HN cosmology. The second
part deals with their applications to observable tests, and makes use of the recent techniques developed for handling
the observational tests of G-varying cosmologies (Canuto et al. 1977; Canuto, Hsieh, and Adams 1977; Canuto
and Hsieh 1978, 1979; Canuto, Hsieh, and Owen 1979; Canuto and Owen 1979).
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COSMOLOGICAL TESTS OF HOYLE-NARLIKAR 7

II. THEORETICAL BACKGROUND
a) The Machian Basis of HN Cosmology

Let a, b, c, . .. label the particles in the universe, which is described by a Riemannian spacetime manifold with
the metric tensor g;,.. Let da denote the element of proper time on the world line of particle a, so that if da are
the coordinate differentials along the world line of a,

da® = g, da‘da* . 2.1

We shall use 4, B, C, ... as typical world points on the world lines of 4, b, ¢, . .. respectively, and X as a typical
point in the spacetime manifold. In macroscopic problems it is often convenient to replace summations over dis-
crete sets of particles by integrations over continuum distributions of matter. This can be done by introducing
particle number densities at spacetime points.

The basic equations of the HN theory are derived from an action principle 8S = 0, with the action

s=-33 f f e,¢sC(A, B)dadb , 2.2)

where G is the symmetric Green’s functions of the wave operator [] + &R, and R is the scalar curvature of the
Riemannian spacetime manifold. The quantities ey, €5, . . . are coupling constants. This is an action-at-a-distance
theory, but it can be rewritten in a field form under the prescription given by Narlikar (1968). Define a Machian
mass function

mx) =3 f G(X, B)edb = J G(X, Besn(B)d*h , 2.3)

where n(B) is the particle density at the point B.

The relation (2.2) shows how the mass function arises from the rest of the particles in the universe. The mass of
a typical particle at A4 is given by e,m(A4). The coupling constants ey, €5, . . . can be positive or negative according
to the rule described by Hoyle and Narlikar (1972q). For the present discussion, it is sufficient to assume that,
for a particle at X, the net contribution to m(X) is restricted to particles lying in the particle horizon of X.

It is convenient to define

F = im*(X), Oy = Tgum'm, — mymy, . (2.4

The gravitational equations are given by 8S/8g% = 0, and take the form
3
Ry — 38R = —F [T + Oy + HguOF — Fou}] s (2.5)
where (we suppress the index m for the moment)
. da* da*
ik, — _ ~1/2 A
T = 3 [ 80X, Dl —g(A)] Peum(d) Z; G da. @.56)

The theory is conformally invariant. Thus, if g;;, and m(X) describe the metric tensor and mass function in a
given cosmological solution of the equations (2.5), then QZ%g,, Q 'm(X) are solutions of the same equations,
for a well behaved Q. (One requires Q to be C® and to satisfy 0 < Q < o©.) In the next section we discuss the
specific conformal transformations of relevance to this work.

b) Different “Gauges™ of the HN Cosmology

The primary motive of the Hoyle-Narlikar cosmology was to give a quantitative expression to Dirac’s large
number hypothesis. To see how the theory deals with the problem, it is instructive to consider the solution of the
basic equations in the simplest form.

i) Minkowski Gauge
In this case we obtain the solution of the equations in a flat background space:

ds? = dr? — dr? — r¥(d0® + sin? 0d$?) . 2.7
The cosmological fluid is homogeneous and isotropic and the solution is given by

e(A4) = egn(B) = An = constant, (2.8)
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8 CANUTO AND NARLIKAR Vol. 236

where A and » are functions of cosmic epoch 7; A(7) denotes the coupling constant and n(r) the particle number
density. We then have

m(r) = $Ar°n = mo(7*/7o7) , (29)
A7) = Ao7o/T, (2.10)
n(r) = netf7o , 2.1DH
G(7) = Gomo*/7*. (2.12)

The suffix zero refers to the present epoch of observation. The mass of a typical particle, say a proton, is given by
m, = Am = m,°Hyr . (2.13)

Here H, is the present value of Hubble’s constant. Notice that the “large number” is explained by the fact that
the dimensionless number

A%(73n)1? = constant = A 2(7,%n,)Y? 2.14)
is of the order unity. To see this in our usual units, we have to restore # and ¢ into the relation (2.14).

ii) Einstein Gauge

The above mode has n(7) # constant, and thus permits creation of matter. It is, however, possible to look at
it in a conformal frame in which it resembles the simplest solution of Einstein’s cosmological equations, viz.,
the Einstein—de Sitter cosmology. With a conformal function of the type

Qg oc 72 (2.15)
we can transform (2.7) to the standard Einstein—de Sitter line element, i.e.,
dsg? = Qg%ds? = dt? — at*3(dr? + r2d6? + r?sin? 6dyp?) , (2.16)

where o is a constant and ¢ oc 7°. Notice that in this frame the gravitational constant
G = constant . 2.17)

However, the proton mass m, is not a constant. The nonconstancy of » and m, conspire to produce the same

dependence of nm, on epoch as in standard cosmology. Thus, while the macroscopic gravitational results can be

taken over from the usual theory, the interpretation of microscopic atomic physics needs to be suitably changed.
iiiy The Atomic Gauge

This gauge is particularly suitable for the discussion of atomic physics, astrophysics etc. For this we choose as
a conformal factor

Q4 = Hyr, ' (2.18)
so that
m, = constant = m,° . 2.19)

However, the gravitational constant G4 is epoch-dependent, namely,

Gy = Go(Hor)™%, (2.20)
where G, is the present value of the gravitational constant. The transformation
2Ht = (Hyr)? .21
changes the original line element to the form
ds 2 = dt? — 2H t{dr? + r2(d6? + sin? 0de?)] . (2.22)

In our discussion of cosmological tests we shall use this line element since we have to interpret observations
conducted in the atomic gauge. Thus in this gauge we have

G, = Go(Hot)™ " . (2.23)

Henceforth we will drop the suffix 4 and restrict our attention to the line element (2.22).
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No. 1, 1980 COSMOLOGICAL TESTS OF HOYLE-NARLIKAR 9

¢) HN Cosmology with Electromagnetic Radiation

The action (2.2) describes the inertial and gravitational interaction of uncharged massive particles. It has to be
modified to include the effects of electromagnetic interaction. This is done as follows. Let a typical particle a
have charge e, (¢, = 0 for a neutral particle). Then the modified action is given by

s = =33 [ cuesCla, Bytaao - 3 S [ [eceGatuari, 220
a#b a#b

where G, is the symmetric bivector Green’s function of the vector wave operator 13, + R, R, being the
Ricci tensor of the spacetime manifold (HN 1961). The variation of the metric gives the field equations in the
form

3
Ry — 3guR = ——F[{T,k”‘ + Juey + Ty (2.25)

In (2.25), T;,™ represents the energy momentum tensor of matter as given by (2.6) and Jy; stands for the additional
terms in parentheses on the right-hand side of (2.5). Both Tj;™ and J;, arise from the first term of the modified
action (2.24) whereas T,°™, the electromagnetic energy momentum tensor, arises from the second term of (2.24).
It should be noted that T}, and J;, go together and are essentially decoupled from 7,™. Thus if we take the
divergence of (2.25), we should get, separately,

[FYT."* + J*}].. = 0, (2.26)
[F—lTemm]:k =0. (227)

It can be verified by direct calculation that these conservation laws hold provided that the matter and the
electromagnetic tensors are decoupled and provided that the electromagnetic energy tensor does not make a
significant contribution to the right-hand side of (2.25). These conditions apply to the present epoch of the uni-
verse as well as to the past epochs over which the various cosmological tests of discrete objects apply. These
conditions are violated in the very early stages of the big bang universe when the dynamics of the universe was
determined largely by radiation and when there was a significant exchange of energy and momentum between
matter and the electromagnetic radiation. In that case, instead of (2.25) and (2.27) holding separately, only their
sum, viz.,

[FHT," + J* + Ten}e = 0, (2.28)

will hold as the joint conservation law for matter and radiation.

It is necessary now to clarify the status of the photon in this theory. It was shown by Hoyle and Narlikar (1974)
that a/l the observable phenomena of quantum electrodynamics can be described by the above action-at-a-distance
picture. Although electromagnetic fields do not have an independent existence in this theory and consequently
photons do not arise as the result of field quantization, all the effects associated with photons can be reproduced
in this theory. Thus spontaneous transition, scattering phenomena, radiation pressure, spectral lines, etc., can be
described in this framework without having to postulate the existence of photon as a massless particle of specified
energy and momentum. Nevertheless, the exchanges of energy and momentum which take place between inter-
acting charged particles can be described in this theory in terms of discrete packets of energy and momentum,
very similar to the photons in quantum field theory. In the rest of this work we will use the word *photon™ for
such packets, since for our purpose here they are indistinguishable from the photons of field theory. There is one
important difference, however.

The photons in the HN theory do not take part in the inertial interaction given by (2.2). They neither acquire
inertia from other particles nor contribute to it. Thus the electromagnetic radiation in this theory can be looked
upon as made of photons which do not interact with particles via the inertial interaction (2.2). Their only inter-
action with spacetime geometry is via the gravitational equations (2.25).

d) The Variation of Observable Parameters
A look at equations (2.5) or (2.25) shows that these are similar to the Einstein field equations if we identify

87G = 3/F. (2.29)

However, there are two differences from Einstein’s framework: (i) the gravitational constant G, defined by (2.29)
varies with space and time, and (ii) there are inertial terms J;, in the energy momentum tensor. We now consider
the consequences of a variable G on the parameters which are involved in the various cosmological tests.
We first note that for this cosmology the curvature parameter k = 0. However, unlike the Friedmann model
with k = 0, the deceleration parameter is given by
go =1 (2.30)

at all epochs. This difference is because of the above mentioned two points.
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10 CANUTO AND NARLIKAR Vol. 236
Next we write the field equations in the form
Ry — 3guR = —8nG(Ty™ + Ju) + Tu™], (2.31)

where T,*" denotes the energy momentum tensor for electromagnetic radiation. Since we are discussing a homo-
geneous and isotropic universe, G will depend on time only.
From (2.26) we now have

[G(T* +JTF)]=0 (2.32)

as the modified conservation law for matter. In our present cosmological framework, this law, which can alter-
natively be written in the form (suppressing the index m for clarity)

m[(Om + $Rm] = T*., , (2.33)
gives for the matter density p,, (P = ¢2pm, ¢ = 0)

1
Pm & GiERE X 1 (2.34)

We would have obtained an incorrect result if we had “decoupled” T,** from J* and written separately
(GTw*) e = 0. (2.35)
In fact, in the atomic gauge (2.35) yields (R is here the scale factor of the Robertson-Walker metric)

Prm @ecoupted) % =p5 X £y, (2.36)

However, as pointed out in § Ilc, equation (2.27), the photons are indeéd decoupled from J;,. For them, we have
from (2.27):
[GT,.* e = (2.37)
if this radiation is essentially decoupled from matter. Writing
T)''=T"=T*= —%p, and T,* =p,,
we easily check that

1
py € ﬁ—* . (2.38)

For a constant G, we get the usual dependence of the radiation energy density on epoch. In the present case,
the extra factor G must be present (Canuto et al. 1977; Canuto and Hsieh 1979; Canuto, Hsieh, and Owen 1979;
Canuto and Owen 1979).

If we consider p, as made of n, photons of energy e,,
N,
Py = Nyey = —177 €, (2.39)

we can use (2.38) to recover the usual cosmological redshift formula. In fact, if we demand that », should depend
on ¥ as n(matter) does, i.e., equation (2.36),

1 1
n,oc-@; N},xaa (240)
then we deduce
e, 1/R. (2.41)

Since ¢, is proportional to the frequency v of the photon, the frequency is reduced in the ratio R~!. Thus a photon
emitted at epoch ¢ and received at epoch ¢, suffers a redshift z given by

] + 2z = o) _ Ko, (2.42)

Finally, in the present cosmological model, G varies in the atomic gauge as (see (2.23) and (2.22))

G = Gyl + 2)%. (2.43)
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No. 1, 1980 COSMOLOGICAL TESTS OF HOYLE-NARLIKAR 11
III. THE COSMOLOGICAL TESTS
a) The m versus z Relation

Because of the historical importance of the m versus z relation as a discriminating test for or against G-varying
cosmology, we shall first present a detailed derivation based on the exact relation (2.38) just derived.

The apparent bolometric luminosity [ is clearly defined as

thN70 1
'= A, TR G-D
where 47r2R,? is the area of the pseudo-sphere surrounding the observer at a distance rR, from the emitter. The

index zero on v, N,, and Af refers to the present epoch. Introducing the absolute luminosity at the time of emission
L

L(t) = WwN,JAt, N,= NJ1), (3.2)

_ L) (At (vo\ (Nyo
I= 4mr2R,? (Ato) (V) (Ny G3)
The ratio At/At, is easily seen to be equal to R(¢)/R, from the general definition of a geodesic motion for photons

ds? = 0. Because of (2.40) and (2.42), (3.3) reduces to
L(t) 1 G@)

we have

T 4mrRE(1 + 22 Gy (3.4)
Since the space curvature is zero, and
R(t) = Ro(t[to)'"?, Hoty = 3, 3.5)
the coordinate rR, is simply given by
c ry\2 c z
S A e A= G0
yielding
1 (Ho\2L(t) G(t)
l - 4 ( C ) Z2 Go (3.7)

Even though the last term in (3.7) can be written using (2.43), we shall use a more general approach that will aliow
us to follow the effect of G(¢) at any point of the derivation. We shall therefore write

G(1)[Go = (tfte)* = (1 + 2)*¥, (3-8)
and analogously

L(t)[Lo = (tte)™ = (1 + 2)*; (3.9
so that finally

_ 1 HO 2 (1 + Z)2(e+g)
= y (7) Lo——zz———— ) (3.10)
or
m=my + Slogcz — S5(e + g)log(1 + z). (3.11)

The factor g is missing in the Barnothy and Tinsley (1973) analysis. The observed plot and the theoretical m versus
z curve are shown in Figures | and 2, but we defer a discussion of these till § I'V.

b) The Metric Angular Diameters versus z

Consider two events occurring at the time ¢ at the points A(r, 6, ¢) and B(r + dr, 6 + db, ¢). The observer is
located at r = 0 at the time #,. The two emission events are separated by a local distance y. The metric angular
diameter 8, is then given by

- .
o = R (3.12)
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12 CANUTO AND NARLIKAR Vol. 236
or, using (3.6),
b = Oo(1 + 2)°/z, (3.13)
with
H, Hy y
=20, = il I N A . 3.14
8 bl 8.6(50) (250 kpc) arcsec (3.14)
54 I I i }
50 |- — - — Present work, G

a6
O
~
= a2
3
(&7
S 38
-

34

30

8 10 12 14 16 18 20
Ve — Ky — Ay

F1G. 1.—The magnitude versus redshift diagram predicted by the present theory (dashed curve). The normalization m, is — 6.78.

The full curve has the equation ¥, = 5 log cz — 6.803 and corresponds to the standard cosmology with g, = 1 and no evolutionary
effects. The data are from the work of Sandage et al. (1976).

f T

581~ + RADIO GALAXIES
& RADIO QSO

+ QUIET QS0
54— @& RED QUIET QSO
X SEYFERT (TOTAL )

50—

| 1 | {
4 6 8 20
Ve

FiG. 2.—The magnitude versus redshift diagram for QSOs predicted by the present theory (dashed curve). The observational
points are taken from Sandage (1972q).
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F1G. 3.—Metric angular diameters versus redshift from the present theory (dashed curve). The data are from Wardle and Miley
(1974).

The 6, versus z has a minimum at z = 1. Before plotting 6,, versus z and comparing the results with observations,
we must warn the reader against taking equation (3.13) too literally. In fact, the quantity y can depend on z due
to the expansion of the radio source. Most likely the variation of G is too slow to have a sizable effect on time
scales of the order of 10% yr corresponding to the generally estimated lifetime of expanding radio sources. One
can therefore take for y = y(z) the standard G-constant expression. However, since no generally accepted model
exists as yet, we decided not to commit ourselves to any particular model. For this reason we have plotted (3.13)
with y constant. Once a model for y = y(z) is chosen, Figure 3 can easily be rescaled.

¢) The Isophotal Angles 0, versus z

Another test often used in cosmology is the isophotal angles versus redshift. We shall now derive the 6, versus z
relation within the present cosmology. To that end, we shall first define the surface brightness B as

B =162, (3.15)
where the symbols have already been defined. Using (3.4) and (3.12), we obtain

L(t) G(t)
B« P+ 2F [—Go (3.16)
independent of r. The determination of 6; is usually made using an empirical formula due to Hubble, namely,
6,/0, c B¥* (p ~ 2). 3.17)
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14 CANUTO AND NARLIKAR Vol. 236
We derive

b —-4/p ﬂ’_) G(t) 1 .

emoc (1 +2) [yz G, ; (3.18)

or, using the expression (3.12) for 6,

oo | o G e 0 G-

or, using (3.4),
yr-2 _g |
61’ oC [lr,T-é (1 + Z)p ] 3

so that

2 p—2 1+ z p—2
logh, = ——m + lo ( ) + log y + const. 3.20
g 5 TR 5108 (3-20)
For the value p = 2 suggested by Hubble,

log 8, = —im + const. (3.2DH)
The results are presented in Figure 4.

d) The N(m) versus m Relation

A cosmological test originally proposed by Hubble that has become increasingly important since the discovery
of QSOs is the count of sources with a magnitude m. The relation is usually written as

log N =a + bm, (3.22)

and the discussion concentrates on the value of the parameter b. Sandage and Luyten (1969) found 5 = 0.75,
Braccesi and Formiggini (1969) reported the value b = 0.72, and more recently Green and Schmidt (1978) have
published the value b = 0.93, the largest value so far published. Without evolutionary corrections, the maximum
value of b allowed by standard Friedmann cosmology is 0.6, corresponding to a Euclidean universe.

In the present k = 0 cosmology, the total number of sources per square degree is given by (Q is the total
number of square degrees in the sky)

— 4_"""_0 3.3
N = 3 QR° re,
or using (3.6)
N = No(—2=)’
= 0(1 T z) , (3.23)
where
_ 4w [ c\3
No == 0 (713) : (3.24)
Defining my* = my + 5 log ¢, and rewriting (3.11) in the form
Z
e m*)] =
dex [0.2(m — my*)] TT 27
we obtain
log N(m) = 0.6m + 3(e + g — 1) log (1 + z) + const., (3.25)
whose slope can easily be evaluated as
dlog N 0.6

slope = (3.26)

om  1—-(e+g— Dz
Calling « the slope and eliminating the quantity (¢ + g)z between (3.26) and (3.11), we obtain the m versus z
relation

o« — 0.6

oz

m = 5logcz — 5{1 + :l log(1 + z) + mg, 3.27)

a relation which is now written in terms of observable quantities only.
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FiG. 4—The isophotal angles versus redshift from the present theory (dashed curve). The full curves (characterized by the
values of q,) are from standard cosmology. The observational data are from Sandage (197256).

e) The log N versus log S Relation

One of the tests that have played a fundamental role in cosmology is the log N-log S test for radio sources.
Unfortunately, most workers in this field have felt it necessary to invoke evolutionary effects in order to get an
acceptable fit to the data, with the result that the log N-log S test seems to be more useful as an indicator of
evolutionary effects than as a geometrical tool. The evolution to be posited ad hoc is usually a strong function
of z, of the form (1 + z)? where p & 4-5. Several possible evolutionary effects have been analyzed—e.g., lumin-
osity, density, etc. We suggest a paper by von Hoerner (1973) for more details on this subject. The aim of our
computation here is twofold: We want to show (a) that a G-varying cosmology yields a perfectly acceptable
log N-log S relation, and (b) that a good fraction of the ad hoc evolutionary correction (1 + z)* is actually
accounted for by the variation of G itself and need not be posited as a free parameter.

In order to proceed to the derivation, let us first of all change (3.10) to make it suitable for a source with a
synchrotron-type spectrum of the form

P@)dv oc vy, (3.28)
so that, with S as the flux, (3.10) becomes
Lo/S = 4w(c/Ho)?z%(1 + z)~ %, (3.29a)
Lo|S = dn(c] Ho)2T2(2) (3.29b)
with
2r=l—-a+2e+g) =27+ 2g. (3.30)

Equation (3.29b) is the first relation needed. The second relation gives the number of sources (per steradian)
with absolute luminosity between L and L + dL(k = 0)

n(r, LdrdL = R¥(t)r2dr®(t, LYdL = R,3(1)r*dr®(L)dL , (3.31)
h
e D(to, L) = O(L) (3.32)

is the radio luminosity function. Changing variables from dr to dz, and from dL to dS using (3.6) and (3.29b),
we now have

5 z2

n(r, LydrdL = 477(Hi) oy e O0Wdzds (3.33a)
0

_ 47T(Hi) 1. 40(L)dzdS (3.33b)
0

= n(S, 2)dzdS (3.33¢)
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where we have introduced the symbols J,% and J,%:

2

R Y A L . (3.34)
£ T+27 1T +2 (1 +2)% -
2 4
4 — z 2 _ z 1 ,
Jn (Z) - (1 + 2)4 JL (1 + 2)5..a+2€ (1 + Z)2g (335)

so as to make the comparison with the standard cosmology easier. (Compare Table 1 of von Hoerner 1973.)
As for the luminosity function ®(L), we shall adopt as in the standard case a function of the type (von Hoerner
1973)

O(L) = O(L/Ly)’ (L4 = 10% watts Hz™ 1) (3.36)
for the interval
Lym=10"3Ly < L < 108L, = L. (3.37)

Integrating »(S, z) over z and dividing the result by nz(S) cc S~%2, the result corresponding to the Euclidean
case, we obtain the so-called normalized number count, n, (4 is a constant),

n(S)

n, = = A55’2+7f
ng(S)

M z
. 1+ 2t
Here z,, and z,, are the maximum and minimum redshifts of the sources counted. To exhibit more clearly the
G-dependence, we shall use (3.30) and the definition of J;? as from equation (3.29) in order to write (3.38) as

J2+2(2)dz | (3.38)

2

sizer [ zir e 20171 - 1)
n, = AS . m—z‘jz‘———mn(w (1 +2) dz . (3.39)
In fact, the exponent y is always negative, y = —|y|: —2 (flat), —2.5 (critical), — 3 (steep).
If we write the last term in the integrand as
(1 + 2)2-D = (] + z)7, (3.40)

the index p turns out to be (g = 1, eqs. [2.43] and [3.8])
steep: p = 4 critical: p = 3; flat: p = 2, (3.41)

which simulates the ad hoc density evolution in standard cosmology (see von Hoerner 1973, eq. [37a]).
To solve (3.38), we need z,, and z,, as a function of S. For that, let us call

=L (H

T 4aS \ ¢

Z2

a1+ 2 :

The quantities z,, and z,, can be obtained as a function of S by inserting L = L, and L = L.
In the case r = 1, we can show that, for any value of y, n, is constant, i.e., the differential count is Euclidean.
In this case we have

)2 = J5(2) = (342)

z _ dz )
1+2° dJL——(1+z)2

r=1: JL=

Equation (3.38) now becomes
n, = AS5/2+yf2M [ z ]‘“27 dz

T+2] T+
M
— AS$/2+7J~ JL4+2deL
Tm
- L(JM5+27 — J+em)gsizty (3.43)
5+ 2y "
Since by definition, (3.42),
J, ~ S-uz,
it follows that
n, ~ const. (r=1,anyy). (3.44)
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FiG. 5.—The normalized n, versus S from the present theory (full lines) for r = —3/2, 1/2, and 1 and for y = —2.5, —2; the

curve r = 1 is valid for any y. To a given r there correspond more than one combination of « and e; see eq. (3.30). The data are
from the work of von Hoerner (1973). In general, as the value of ¥ becomes more negative, the theoretical curves tend to flatten.

The cases r = 1/2 and —3/2 for y = —2 and —2.5 were computed numerically, and the results are presented in
Figure 5.

At this point it is necessary to make two comments. In Figure 5 we have shown the comparison of the theory
with observations made at 178 MHz. It is, however, well known (Wall 1977) that at higher frequencies the n,
versus S curve flattens appreciably and becomes even more Euclidean than shown here. Thus the agreement of
the present theory for e = 0 with observations might even be improved when these higher frequency surveys are
included. As noted previously, in the parameter-fitting exercise undertaken to fit standard cosmology to the
radio data, it is usual to assume a density evolution of the form (1 + z)®, with p as large as 5 (Longair 1971;
von Hoerner 1973), or other analytic forms which show increased density in the past. In the present theory the
presence of a term dependent on a power of G in equations (3.39)-(3.40) serves the same purpose of density
evolution by boosting the value of the integrand at high z. However, this term arises naturally in our present
discussion rather than as postulated in the usual theory on an ad hoc basis.

1V. THE EVOLUTIONARY PARAMETER ¢

Before we can meaningfully compare any of the previous relations with observational data, we clearly must
have an estimate of the parameter e introduced in (3.9). Since we shall be dealing with optical galaxies as well as
with radio galaxies and QSOs, we shall present two different derivations of e, one valid for galaxies made of stars
and one valid for QSOs and radio galaxies.

a) The Evolution of a Single Star

Suppose we consider a single star and ask ourselves how its luminosity depends on G and M as time progresses.
Standard stellar evolution equations yield

L oc G'M® @1

if Kramers’s opacity and the p-p cycle are used. The strong dependence of L on G has been emphasized over the
years by many authors—for instance, in connection with the thermal history of our Sun.
Equation (4.1) is usually employed under the approximation M = const., so that

L oc G" = Lo(t,/t)" (4.1a)

a relation often applied to galaxies too.
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Several comments are in order.

i) First of all, the use of (4.1) with the imposition of mass conservation while keeping G varying, contradicts
Newtonian physics. In fact, within Newtonian mechanics it is easy to show that if for whatever reason G is to vary
with time, then energy cannot be conserved. This point, discussed in detail by Bishop and Landsberg (1976), can
easily be seen by considering that if G — G(¢), then

F= —Gmmyfr2) = —=VV (@) — —-VV(r, 1),

i.e., the energy becomes time dependent, and one cannot have consistency by requiring G = G(¢) and at the
same time M or E = const. as is done in arriving at (4.1a). The correlation.between G and M can easily be seen
from the Einstein equations which, when applied to an isolated spherical object (like a star), imply that

GM = const . 4.2)

This relation is clearly valid even at the Newtonian level at which we work. If one decides to use (4.1), then one
would have instead of (4.1a), the expression

L oc G2 o (tty)"2, 4.3)
i.e., e = 2 and not e = 7. With such a value of e, equation (3.11) now becomes (g = 1)
m= 5logcz — 15log(l + z) + my. (4.4)
For example, at log cz = 5, z = 1, we obtain
m = 25— 187 + m,, (4.5)
instead of the value of Barnothy and Tinsley (1973)
m=25—-43 + m,. (4.6)

ii) Can we really believe (4.3)? Legitimate doubts may arise when one considers how (4.1) has actually been
derived. In fact, the ingredients that have gone into the standard derivation of (4.1) are: (a) the radiative transfer
equation that uses p, oc T* instead of

1
pyoc 1" .7

(see [2.38)) and (b) the Boltzmann distribution for particles (to obtain the opacity and the nuclear reaction energy

output) that conserves the total number of particles. This again contradicts (2.34) which demands that the particle
number should scale like

N~ G2, (4.8)

In other words, the very ingredients used to construct (4.1) conserve energy: if so, the constraint (4.2) implies that
G is constant and (4.1) is therefore useless.

iii) The correct way to derive L = L(G, M) when G varies is as follows. The hydrostatic equilibrium equation
can be shown (Canuto et al. 1977) to hold unaltered even if G varies; i.e., we still have

dp _ _ mir)e
5= "0z 4.9)
For the radiative transfer equation, we shall write
_ 4mricdp,
L(r) = T (4.10)

where k is the opacity. The other definition L = €M, where ¢ is the nuclear energy output, is clearly unchanged.
Using the same dimensional arguments employed to derive (4.1), but using now (4.7), we obtain

RT* RT* RT: 1
kG TkGM ™" kg T8 K’

Lo .11

where we have defined

g=GM.
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Since p = nkT = (p/mp)kT, it follows from (4.9) that
p o GMp|R o< pg/R

and
TR ~ g. (4.12)
Since now
L=eM = eGM|G = /G, (4.13)
we finally obtain
ke oc Gg2. 4.14)

Let us now use for € and k the standard expressions but let us remember that in both cases we must integrate
over the Boltzmann distribution function, which must now contain a factor G~*2 in the normalization; see
(4.8). The Rosseland mean does not introduce an extra factor of G: being a mean value, the normalization of
(4.7) like 1/G cancels out. We shall write (f;2 = /22 = G™1)

ko fop' T, € oC f1psT™ (4.15)
(r=s=1,n= —3.5m = 4.5 for the Kramers’s opacity and the p-p cycle). We now have from (4.14) (f = f, f2)

1+t 1/
T (GT g2+2t) ‘ (4.16)
with
g=n+m+ 3t, t=r+s,;
and so
f lia
Rx g(a‘“—%;am :
Finally, using (4.15), (4.16), and (4.17), we obtain from (4.13)
L oc (GM)aGb(f13T+n/](‘23s+m)1/q s (417)
where
a=9s+3m+2mr+3r+n—2sn, b=mr—n(l+s)—3r. (4.18)
n+m+ 3s + 3r n+ m+ 35 + 3r

with f12 = 32 = G, we get

s —3r+m—mn
arb+c = 5 .
L o (GM)*G®*¢, 20—n+m+3s+3r 4.19)

where r = s = 1. In fact, if r or s were different from unity, the density dependence of ¢ and k& would not be
linear and the correction factors f12 and £, would not be simply G~*.

a) When we are dealing with the evolution of a single star, the constraint (4.8), i.e., g = GM oc G2 applies,
so that

b+c+al2
LocG ca/’

with
~ m@2r + 1) = 3n—9r + 35 — 2sn
2+ ) = n+m+ 35+ 3r ’ (4.20)
where again r = 5 = 1.
For Kramers’s opacity, n = —3.5, m = 4.5, so

L oc G**° (4.21)
instead of

Lo G". (4.21a)

Equation (4.21) and not (4.21a) should be used to study the time evolution of the Sun’s luminosity and its possible
effects on the Earth’s early temperature.
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b) There might be cases, however, when the constraint (4.8) does not apply. In that case we must distinguish
at least two cases depending on the opacity in use.
For stars with Kramers’s opacity, we obtain for (4.19)

Lo M*G® 4.22)
with
9s + 3m + 2mr + 3r + n — 2ns _Tm + 6mr 4+ 2ls — 3r — n — 6sn
o = 3 28 = )
n+m+ 3s 4 3r n+m+ 3s + 3r
valid again for r = s = 1. With n = —3.5 and m = 4.5, we obtain
o =542, 8 =721. (4.22a)

For stars with constant opacity, we must go back to (4.17) and put f, = 1, r = n = 0, thereby getting
Lo M*G?, «a=8=3, (4.23)

independently of s and m. The interesting thing here is that « and & are the same. In standard cosmology, « = 3,
8 = 4. The lowering of & is due to the extra power of G in (4.7). As (4.10) indicates, the luminosity L is in fact
proportional to p,.

b) Stellar Populations

Let us now perform a full treatment of the contribution to the total luminosity of a galaxy as coming separately
from dwarfs and giants. We shall generalize a treatment for constant G (Tinsley 1976; Maeder 1977; also Canuto
and Hsieh 1979; Canuto, Hsieh, and Owen 1979; for a general treatment within scale covariant cosmology).

For L,, the contribution by dwarfs, we shall write

Mr dN
Li=| == 1,dM, (4.24)
¢y, dM ™

where M, is the turnoff mass at the time ¢. The luminosity
Ly = Iu(t)
of a star of mass M (¢) will be written in general using (4.22). The Salpeter initial mass function (IMF)

dig o« MGt (4.25)

must be generalized to include an M (¢). Since GM o«c G2, we have

dN(t)

M () oc M-A+I()G 2, (4.26)
The main-sequence lifetime = scales like
-roc%%i))oc Mi-eG-2, 4.27)
where 7 = t — ¢, and ¢, is the time at which the galaxy was born. We have
M(t) oc tVA-0(1 — gy HlA-oGid-o (4.28)
Using (4.26) and (4.22) in (4.24), we obtain
Ly oc GP~*2(t)M = *(t)| 4! (4.29)

Since the major contribution comes from the upper limit, we obtain using (4.28)

Ld o G&—x/2—G(a—x)/«z—l)t—(a—x)/(a—l)(l _ tl/t)—(a—x)l(a—l) .

By putting G = const., one recovers Tinsley’s expression (1976). Neglecting ¢,/¢ with respect to unity and using
G ~ t~1, we finally obtain

Lyoct™c, (4.30)
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where

o« — X
a—1

edza—§+(1—a) : (4.31)

The interesting thing about this expression is that for the value x = 1 that is usually used, e, becomes independent
of @ and §; in fact,
es = 3%. 4.32)

For G = const. and x = 1 the corresponding e, is unity.
Let us now study the contribution due to giants (post-main-sequence stars). This, following Tinsley (1976),
will be written as

anN() |ldM(t)|
Lo % 7o T3 “ — (4.33)
Using (4.26) and (4.28), we now have
L, o 7,0t~ 1= *0-0G -2tz +8d-a1 4.34)

where as usual we have assumed G ~ ¢t~ ! and ¢, « t. For G = const., (4.34) reduces to equation (9) of Tinsley
(1976), where the symbol y stands for a/(e — 1). Since

lyrg o M(1) ~ G712, (4.35)
we finally have
Lyoct %, (4.36)
- X x
egE'——z—-'*"m(l —8). (437)

This expression is a particular case of a more general expression (A20) in Canuto ef al. (1979).
The total luminosity will now be written as

Lo Ly + al, oc t7%fl + at™%*¢] . (4.38)
It is interesting to note that e, — e, is independent of x. In fact,
d—a 1
eg—ed=m+§- (439)
Defining
dinL _
T = "¢ (4.40)
we derive the general expression
e =¢; + _1+—Re1 s (441)
where
8 —a 1
e = a—-_——I + E . (4.42)

With the values « = 8, derived before, equation (4.23), e, is 4. For « and 8 given by (4.22a), e, = 0.90. Since for
x = 1, e; = 1, the total e is therefore not larger than unity, quite different from e = 7 used previously (Barnothy
and Tinsley 1973).

Equation (4.41) can now be used to compute the m versus z relation (3.11) with g = 1. The results shown in
Figure 1 (dashed curve) correspond to x = 1.

For QSOs we cannot compute e from any reliable theoretical model. We have therefore followed another
route. We eliminate e + g between (3.26) and (3.11), thus getting (3.27) which now contains only observable
quantities.

Alternatively we can determine the value of e from (3.26) by demanding that the slope be, say, 0.75, an average
value between the ones quoted after equation (3.22).

In the case g = 1, we would then get from (3.26)

1
ero = § ’ (4.43)
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which we shall then use for the QSO part of the m versus z diagram. Since, for QSOs, z > 1 (log ¢z = 5), equation
(4.43) implies that

3
€qso < 5

a small value not very different from the one computed for optical galaxies. Putting (4.43) into (3.11) with g = 1
gives rise to the dashed curve of Figure 2 that begins at log cz = 5.

v. THE 3 K BLACKBODY RADIATION

The prediction, discovery, and confirmation of the existence of a universal background radiation with a tem-
perature of about 3 K has been justly acclaimed as a major indication that a hot, dense phase existed in the early
universe, today’s radiation being the vestige of that period. To formulate a consistent treatment, we must make
sure that the integrated distribution satisfies (2.38) at any time. The standard thermodynamic derivation must
therefore be modified to take account of the variable gravitational constant.

We first write
Pv(v) = Pv(V)P(G) s (51)

where p, (V) depends on the volume V of the system while p(G) depends only on G. From thermodynamic argu-
ments and using the Doppler shift formula, we arrive at the well known relation

V] = 3 2 ()], (52)

which integrates to
o V) o SOEVB) | (5.3)

Here @ is an arbitrary function whose form is determined to be Planckian by the usual arguments of quantum
statistics. Thus we have

p(V) = 8mPF(/T) . 5.4

However, in order to satisfy (2.38), we have to choose the function p(G) to have the form p(G) «c G~*. Thus
finally we get

_Gt) o 5
py (V) = T 8miF(T) . (5.5)

In (5.5), G(¢) is the gravitational constant at the epoch ¢ at which p,(v) is measured, while G(¢4) is the gravitational
constant at an arbitrary but fixed epoch t,. Equation (5.5) represents the equilibrium distribution function of
radiation, and it is seen to preserve its form during the expansion of the universe even if the gravitational constant
varies with time. (For a more general thermodynamic treatment leading to [5.5] as a particular case, see Canuto
and Hsieh 1979.)

It is the equilibrium distribution, not the Planckian distribution, that is endowed with physical significance.
In standard cosmology, the two happen to coincide and one therefore talks about the preservation of the Planckian
form during expansion. In the present, more general, framework the two do not coincide and it is therefore
unphysical to demand anything at the level of the Planckian form. What we ought to make sure of is that the
equilibrium distribution (whatever its form might be) is unchanged after matter and radiation have decoupled:
this does happen in the HN theory.

The confusion between the physically significant “equilibrium distribution” and the more accidental form
represented by a “Planckian” led Steigman (1977) to conclude incorrectly that G cannot vary (see Canuto and
Hsieh 1979).

It is evident from (5.5) that the equilibrium distribution at the present epoch agrees with the observed micro-
wave background distribution if we set T = T, & 3 K and G(¢,) = G(¢,). The most recent observations by Woody
and Richards (1979) indicate deviations from the Planckian curve, and it may be possible to have a better fit
of (5.5) with these observations. Such a fit will determine the parameters T, and G(z,) more accurately.

If it becomes possible in the future to measure the equilibrium distribution of the microwave background in
remote parts of the universe (i.e., at earlier epochs), such measurements should reveal the time-varying factor
G(2)/G(t) in (5.5). This is therefore a new test of the HN cosmology.

VI. CONCLUDING REMARKS

The differences between “G-constant™ and “G-varying” cosmologies are in general of two kinds: geometrical
and physical. In principle, it should be possible to test these differences to see which (if either) cosmology is right.
In practice, however, the situation is more complicated because these differences get mixed up. Our discussion of
the various cosmological tests has emphasized this point.
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Of all the tests, the oldest and the most discussed m-z test makes this amply clear. Although in principle one is
hoping to measure the large-scale geometry of the universe, the actual distance measurement involves magnitudes
which in turn involve the luminosities of the so-called standard candles. Even in standard cosmologies, the evolu-
tion of luminosity has made the m-z test and the measurement of the “true ¢,” very uncertain. In the G-varying
cosmologies the effect of G-variation on the luminosities can be very sensitive, and great care needs to be exercised
in the comparison of theory with the existing data. So far as galaxies are concerned, we have shown here that the
m-z relation of this HN cosmology is consistent with observations. For the QSOs, because of the highly uncertain
nature of the luminosity evolution, we have used the N(m) test to eliminate the evolutionary parameter. When
this is done, the theory is in satisfactory agreement with the m-z plot of QSOs.

For the log N-log S test, it is interesting to note that a decreasing G can play a role analogous to the evolutionary
parameters usually introduced ad hoc to make standard cosmologies agree with the source count data.

Finally, although the equilibrium-background radiation in this cosmology differs from a blackbody curve,
the differences are not detectable by observations at a single epoch (i.e., the present epoch). It may well be possible
to devise tests which could compare the cosmic microwave background at earlier epochs with the present back-
ground. Only in this way can a distinction be made between the standard cosmology and the G-varying Hoyle-
Narlikar cosmology.

This work was performed while one of the authors (V. M. C.) was at the Tata Institute for Fundamental Re-
search, Bombay. The author would like to express his thanks to the Director of the Tata Institute, Professor
V. Sreekantan and to the staff of the Astrophysics group for the warm hospitality extended to him during his
visit that made this work possible. V. M. C. would also like to thank NSF for a travel grant.
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