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Machian Theory of Inertia and Gravitation

RDRERT C. GILMAN*

Princeton University Observatory, Princeton, Nnv Jersey 08540
(Received 12 March 1970)

The generally covariant integral formulation of Einstein s Geld equations developed by Sciama, Waylen,
and the author is used to deGne the source-free contribution to the inertial-gravitational Geld. A theory is
then developed, based on Mach s ideas on the origins of inertia, that requires of acceptable cosmological
models that they be entirely source-generated solutions of Einstein's Geld equations without the cosmological
constant term. We show that many (and probably all) nonempty relativistic Robertson-Walker models
with p=p and 0&p&pc' are acceptable Machian cosmologies, in terms of this theory. On the other hand,
many solutions are found to be unacceptable as Machian cosmologies, including the Minkowski, Schwarz-
child, Kerr, Godel, and Kantowski-Sachs-Thorne solutions. Some of the implications of this theory are
discussed.

I. INTRODUCTION For notation convenience, we will rewrite Eq. (1) as

II. THEORY

Source-free Contribution to IG Field
I

In the SWG formalism, the IG potential at some
space-time point x' is given by a volume integral over
sources in the past light cone plus a surface integral,
~ 4i.e.,

g 'P'(x') =2»
A

G„—"p'"(x,'x) T~„(x)——,'T(x) b~„—8„"

XL—g(x)]'&'d'x + G "p'".' (x',x)

*Present address: Rosburg, Wash. 98643.
1D. W. Sciama, P. C. Waylen, and R. C. Gilman, Phys. Rev.

18'7, 1762 (1969).' B. I. Al'tshuler, Zh. Eksperim. i. Teor. Fiz. 51, 1143 (1966)
/Soviet Physics iETP 24, 766 (1967)g; D. Lynden-Bell, Monthly
Notices Roy. Astron. Soc. 135, 413 (1967); D. W. Sciama, P. C.
Waylen, and R. C. Gilman (Ref. 1); R. C. Gilman, Ph. D. thesis,
Princeton University, 1969 (unpublished).

'E. Mach, The Science of &Mechanics (Open Court, Chicago,
1919).

4The SWG formalism and the notation employed in it are
explained in R,ef, 1,

2

' N a previous paper, ' Sciama, Waylen, and the author
~ - have presented a generally covariant integral for-
malism based on Einstein's field equations (hereafter
referred to as the SWG formalism). In this paper, the
SWG formalism will be used as the basis of an integral
theory of the inertial-gravitational (IG) field. The
qualitative ideas behind this theory have been discussed
previously by a number of authors. ' Briefly, the idea is
that, in accord with Mach's ideas on the origins of
inertia, ' we want to admit as physically acceptable only
those space-times that are entirely source-generated.
The importance of the SWG formalism is that is pro-
vides a means for rigorously distinguishing between the
source-generated and the source-free contributions to the
the IG field. In the rest of this paper we will develop the
theory, apply it to a number of relativistic cosmologies,
and discuss the results.

gu p (x') = 'ga p (x', cl&)+'g p (x', c)Q), (2)

where 'g p. and 'g p represent, respectively, the
volume and surface integrals in Eq. (1).

In the standard integral formulations for scalar and
vector fields, ' the volume integral is interpreted in
physical terms as the contribution to the local field from
the sources within the volume of integration, while the
surface integral is interpreted as the contribution from
sources outside the volume of integration plus any
"waves coming in from. infinity, " i.e., the source-free
contribution. An important feature of the SWG for-
malism is that the conditions under which it is the
unique integral representation of Einstein s field equa-
tions are completely analogous to the conditions that are
required to ensure that the standard integral formula-
tions for scalar and vector fields provide unique repre-
sentations for their respective field equations. '

This suggests, and we shall assume, that the usual
physical interpretations are applicable to 'g p and
'g p . Thus the source-free contribution is part of
'g p, and our problem now is to separate out this
part.

The integrals in Eq. (1) are well defined as long as
the volume of integration 0 is globally hyperbolic. 7 The
requirement of global hyperbolicity is essentially a
causality requirement, since it excludes closed timelike
paths. Globally hyperbolic cosmological models are
generally of two types: Either they have a particle
horizon in the 6nite proper past or they extend back
into an infinite proper past. Let us define BQq as that
bounding surface which, on and within the past light
cone, is either the surface formed by the union of particle
horizons for points on a timelike world line containing
x', or the infinite past "surface, " whichever is appro-

~ See B. S. DeWitt and R. Brehme, Ann. Phys. (N.Y.) 9, 220
(1960).

For a more detailed discussion of this point, see R. C. Gilman,
Ph. D. thesis, Princeton University (unpublished), as well as
Ref. 1.

7 Y. Choquet-Bruhat, in Battele Rencontres, edited by C. A.
DeWitt and J. A. Wheeler (Benjamin, New York, 1968),
p
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priate for a given cosmology. Let us also define

I~ipi(ri) = lim g~ioi(x, 80) .
ao any

(3)

When we take the limit BQ —+ 808, Q comes to con-
tain all of the sources in the accessible past light. cone,
so I s must be interpreted (in analogy with the usual
interpretation in the case of seals, r and vector fields)
as "waves coming from BQq,

" i.e., contributions to the
local field that cannot be attributed to any of the ob-
servable sources. Since it is not source-generated, I p

must be the source free contribution to the IG fietd at x'.

Classi6cation Scheme for Relativistic Cosmologies

With the source-free contribution to the field now
defined, we can briefiy state our Machian theory.
Every acceptable cosmological model must: (1) be a solu-
tion of Einstein's field equations with A=0, and (2)
contain no source-free contributions to the IG field, i.e.,I p =0 everywhere. Thus the acceptable cosmologies
in this theory are a subset of the relativistic cosmologies.
We require A. =O because within the SWG formalism
A must be treated as a source term; yet A is clearly not
a Machian source term. .

What is the program for developing this theory? The
condition I p =0 is a boundary condition, and if this
theory were linear, we could use this boundary condition
and the SWG integral equations to compute the solu-
tions that are acceptable cosmologies. Even with the
nonlinearity of the theory, it may be possible to do this,
but it is not yet clear how. We will instead start with
a known cosmological solution of Einstein's field equa-
tions and thus also of the integral equations. We can
then (1) compute the Green's functions, (2) compute
'g o. for 8QA8Q~, and (3) compute I s. We will then
use the scheme in Table I to classify the solution. This
classification scheme is very elementary, but it is
probably wise to wait until more is known about the
general theory of Green's function integral formulations
and how they apply to general relativity before con-
structing a more elaborate scheme. For many cosmolo-
gies it will not be necessary to carry out all three of the
above steps. There will also be some cases in which it is
impossible to do so because, for example, not all cos-
mologies are globally hyperbolic. We can, nevertheless,
classify al/ relativistic cosmologies with the above
scheme. The division between Classes I and II and Class
III is immediately obtainable on the basis of A., and if
I p is not well defined for some solution, then the solu-
tion can not be of Class I. Thus our provisional program
for the development of the theory requires the classifi-
cation of known relativistic cosmologies according to
the above scheme.

We can in fact immediately classify many solutions
by inspection. Thus, in Class II are all solutions with
A.=O and T„„=Oeverywhere; in Class III are all solu-
tions with A.&0, notably the Godel solution. It should

TAar.E I. Classification scheme for cosmological models.

Class I~„

I zero everywhere zero
II not everywhere zero

zero

III anything rionzero

Proposed interpretation

fully Machian cosmologies
non-Machian as cosmologies,

but possibly Machian as
pieces of Class-I cosmologies

non-Machian

be noted that the Godel solution is not of Class I not
only because of its nonzero A, but also because, with
its closed timelike world lines, it is not globally hyper-
bolic.

This does not involve the bi-vectors of geodetic parallel
displacement and thus it is simpler to compute than the
full Green's function. The boundary values for V '&"„
on the light cone have the simple form

v-'&" L1—(1/2z)z, „.r'"7+ v-'&" . .r "
= ——,'g-'o'~'z+Z-'o'z. (5)

III. APPLICATIONS

Robertson-Walker Cosmologies

The simplest cosmological models consistent with our
understanding of the universe have metrics of the
Robertson-Walker type, " i.e., with time-orthogonal
spacelike hypersurfaces which are homogeneous and
isotropic. We will begin our analysis of specific cosmo-
logies with this important group. Of the many forms
of this metric, the most useful for our purposes can be
expressed in terms of the line element

ds'= A'(r) [dr' —dX' —5'(&)d&'7, (6)

where r is a timelike coordinate (x'), X is a radial space-
like coordinate (x'), 8 and p are angular coordinates
(x' and x'), and

dQ'= d8'+sin'8 dp'.

There are three forms for S(X), depending on the

8 D. W. Sciama, P. C. Waylen, and R. C. Gilman (Ref. I.).' For definitions and notation, see Ref. 1.' H. P. Robertson, Astrophys. J., 82, 284 (1935);A. G. Walker,
Proc. London Math. Soc, 42, 90 (1936)

Some General Equations

Before going on to consider specific cosmologies it will
be helpful to record here some general equations needed
for the evaluation of I p and not reported in our
previous paper. ' The surface integral 'g p involves only
the partially contracted retarded Green's function
which, within a normal neighborhood of x', can be
written as'
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curvature, i.e.,

S(x) = sinx
=x
=- sinh&

for &=+1
for k=-0
for

H~„= e 'e,~B';;, (17)

We will find it convenient, for explicit calculations,
to work in terms of orthonormal tetrad (ONT) com-
ponents, i.e., we relate tensor components to ONT
components by"

where physical considerations require 0&y& 1.'"- Models
with this type of equation of state have to be discussed
thoroughly by Vajk" and others, and we give here,
without proof, some well-known results. This equation of
state has the conservation law

Iio=P(r)A ~'&+'&(r) = const.

A (r) is given by"

where

k =+1:A (r) =Ao"" sin (r/222),

/=0. A(r)=As~&2(r/2')~,

A(r)=A ~' sinh (r/m),

222= 2/(3y+ 1), A o
= -'s~poC'.

(11)

(12)

(13)

The zero for r has been chosen so that A (r) ~ 0 as
r —+0. The most general nonempty models of the
Robertson-Walker type have equations of state of the
form

p(r) = V(r)~(r)c',

where again physical considerations require 0&p(r) (1.
Allowing y to vary with time is physically reasonable,
but complicates the mathematics without changing the
qualitative features of importance here. It should be
noted that all nonempty Robertson-Walker models
have singular constant-r hypersurfaces at r= 0.

The empty Robertson-Walker model is Minkowski
space-time. This can be written in terms of our line
element in either of two forms:

k=0, A(r)=C
or

k= —1, A(r) =Ce,
where C is some arbitrary nonzero constant.

(16)

u H. P. Robertson (Ref. 10).
» See S. K. Harrison, K. S. Thorne, M. Wakano, and J. A.

Wheeler, Gravitation Theory arId Gravitational Collapse (Chicago
U. P., Chicago, 196S).

»J.' P. Vajk, Ph. D. thesis, Princeton University, 1968 (un-
published).

~4For 4&0, Vajk gives A(T) for only certain values of &e.
The general forms (11)and (13) were obtained by Dr. J. E. Gunn
and the author and are apparently new.

where k is the curvature index. "
The scale function A(r) can be obtained by solving

Einstein's field equations; it depends on k, the energy
density pc2, and the pressure p. It also depends on A,
but since any solution with 4&0 belongs to Class III,
we will consider only A= 0 solutions here. The behavior
of A (r) can be illustrated by taking an equation of state
of the form

p(r) =pp(r)c',

We will distinguish between tensor and ONT for explicit
components with a tilde, i.e., 8"pp for tensor and JVpp
for ONT.

Finally, we will use the convention" that, for Q
some arbitrary function of r and/or X,

Q=—BQ/Br, Q'=—BQ/Bx.

Bi-Scatars r and Z

We now proceed with the evaluation of the quantities
necessary to determine I p for Robertson-Walker
models. Let xp be a local variable point and let g~ be
some other (fixed) space-time point. Let the radial co-
ordinate system be fixed at x~ (i.e., Xr ——0) and

TO

dr=rp —ryp

xp

(jX=Xp

Along radial geodesics these are related by'~

TP

D +P2A 2(r )j—1/2ct (20)

where we adopt the convention that the top sign refers
to the h»0 case. The bi-scalar p(xo, xr) is constailt
along the geodesic and equal to zero on the light cone.
The geodesic interval s(xo,xr) is given by

TO

$1+P2A '(r) 7'i2A 2(r)d7-.(21)

» Cf. H. Flanders, Differential Forms (Academic, New York,
1963).

~6 We are also using the prime (') to denote a particular space-
time point, g' and its associated tensor indices (see above), but
this double usage does not overlap and should not cause any
confusion.

"H. P. Robertson, Rev. Mod. Phys. 5, 62 (1933l.

where 5', is some arbitrary second-rank tensor. We
will, for the rest of this paper, use Greek indices for
tensor components and Latin indices for ONT com-
ponents. The e's for our form of the Robertson-Walker
metri. c are

eo' ——ei'=- A (r),
e2' ——A (r)S(x),
eg = sln8 eg

e„'=0 for. pp-' j.
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Let us de6ne

l„(rp, rf) = A"(r)d2 . (22)

I'rom the general rules for transforming Dirac 8
functions' and the above results, w'e 6nd the following
simple expression for the light-cone part of the Green's
function, i.e.,

Then we iind from Eq. (20) that

P'(XpjXg) = (2/I2)(dr&AX)+ (3I4/I2') (Dr&AX)'

+ (9I4'/I2' —SI0/I2') (hrWAX)'

+0L(I~~X/~r)'g. (23)

From the definition I'(xp, xr) =+s2(xo,xr), and Eqs. (21)
and (23), we find

I'(xp, xr) =2I2(hr+ 6x) —(I4/I2) (Ar +Ax) 2

+ (Io/I2 I4 /I2 ) (hr&DX)
+OL(1&AX/0 r) 4). (24)

The bi-scalar Z is related to I' by'8

b(hr —AX)
8—(I')Z(xp, xf) =-

A (rp)A (rt)s(DX)
(28)

The terms in the denominator can be interpreted as
follows. One of the A's is necessary for bookkeeping
reasons since 8 (I') is a bi-scalar but 8(24 r i4,X) —is a
bi-density. The other A combines with the 5 to give a
proper radius; i.e., 4+A'5' is the proper surface area of
a sphere centered on the source, going through the ob-
server, and evaluated at the time of the reception of the
signal at the observer. "

Z(xp, xr) =-4Lg(xp)g(xr) j '"[—det(I', „o,,f)$'",
and we find

I, A'(rp)+A'(rf)
1 —— (Sr~~X)

A(ro)A(rt)s(AX) 2I,

(25)
Bi-Iensor V"'&'"

This part of the Green's function is a solution to the
homogeneous field equations. "To solve for it in the
case of the Robertson-Walker metrics, we need the
explicit form for D„„m „where D„„,is the basic opera-
tor of the 8%G formalism,

On the light cone,

+0((1+t1X/&r) ') (26)

(
—'+2).

A2(rp) A(rp)

Djvvar= 4 (gjrvgvr+gjvrgvv) & ~p 2 (&jvr+jr&2rv )j2jr

and m „is some arbitrary symmetric second-rank tensor.
We shall assume Bw„/802=0, since it is easily shown
that this is the case for the tensors and bi-tensors of
interest here. We 6nd

g G)pp A 5
D 'M — VO +2—woo —2—woo'—

2 5' 88' A 5
cot88 A 4A 8 A

Woo+4 W01 + W02 6 Woo5' (38 A A588 A

AS' Acot8 A ' A 2-

+8 Wpl+4 W02 2 —(Wir+W22+W22) +2 ——— (Wrr+W22+Wss), (29)
A 5 A 5 A A A

1 8'wpi A 5' cot8 8 A 2 8 A 5'
D„"w., = — w' w i" — +2~—„—2——w„—— —w +2—(w„'+w„')+ ———w„+ —w„)

2 5' 88' A 5 5' 88 A 588 A 5

5' ' As' 2 cot8 A 5' A A
—6 —

~
Wpi+2 —Woi+2 (2wll W22 Wss)+ W12+ W02 + Wpl 2 (30)

Ai S AS S A S

ot8 Bzvp2 A 2 8 5'
+2 w12 + (woo+Woo) —woi—

5' 88 A 588 A 5
1 8'mp2 A 5 c

D W = S W02 —W02 —— +2 Wpo —2—W02—
2 5' 88' A 5

A)' 5' ' cot'8 A 5' A cot8 A" A
6

~

— Wp2+6 W12+2 (W22 W23) + W02 2 (31)
S S AS AS

8Cf Refs 1 and 5
0 Cf. B. Friedman, Prilciptes astd Tech22ig24es of Applied iMatheslatics (Wiley, New York, 1956},p. 136.

'0 Cf. H. Bondi s discussion of luminosity distances, Cosmology (Cambridge U. P., Cambridge, England, 1961), p. 107.
"See Ref. 1.
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I 8 'LVp3 A 5
Dos"W« =yS sln8 wps =«'ps —— — +2 wos —2—wos~—

5' 80' 3 5
cot08wog A 2A 8

+2 —Wls + —Wsss' 80 A SA 80

5' ' cot'0 A 5' A cot0 i A
6 ——————woo+6——wls+4 — wzs+ ——— wos, (32)

A 5 5' AS A 5 A A

I 8 G)yy
//

D~~ w, „=—My' —w~&
2 5' 80'

A 5' cot8 8 A 5' 8 t5'
+2 wll —2—zslll — —zztll+4 —wpl +4——wls+2~ — (2zvll —woo —wss)5 5' 88 A 5'88 (5

5/
—2 — (zvl]+capp)+4 —cot8 zvls —2 —+/s (wss+zvss)+2 ——— zvpp, (33)52 A A A

8 tvy2 A 5
Dlo Wor = s5 Wlo —ZV12 +2 Wls 2—Wls—

5' 80' A 5
cot0 (9 A 2 g

wls+2 wos + ——(woo —wll)+ —wpl5' 80 A 580 5
5' ' A ' cot.'0 S' A 5' cot0 2

+ 3 ——2 —+—wls —2——Zeros+2 — (wss —zvss)+ —+/s Wlo (34)5 A s' SA 5 5
A 5' cot0 8

D, sorzz«l———'5 sin8 Wls —wls —— +2 Wls —2—Wls — —wls+2 —wos +5' (30' A 5 5' (30

25' 3—egg5' 80

5' ' A ' cot'0 5'A 5'cot0 A+ 5 — —2 —+—'wls —2——zvps+4 —— woo+ —+k wls, (35)52

1 8'vv~2 A 5' cot0 8 4 8 A 5'
D orw —s5 wsz —wss +2 Nss 2 w22 W22+ wps zvlz +2 (Wzs —wll)5' 80' A 5 5' 80 5 80 A 5 5

A A 5' cot'0 A—2 —(zlzz+woo)+4 — wpl+—2 -(wss —zz'ss) —2 —+/s (wll+wss)+2 ——— wpp, (36)AS 5' A

I BK23 A 5
D» 'w, =—',5' sin8 w'ss —wss" —— +2~» —2—zz, s'—

5' 80' A 5
cot08 2 8 A 5'—ZV2S+ Wps wls5'80 580 A 5

5' ' A ' 2 cot'0 cot0 A 5'
+2 + wss 2 wos wls + —+k w», (37)

A 5' 5 A 5
I 82%33 A 5

Dos "w« ', 5' sin'8 wss —wss" —————+2—wss —2—zvss'—
5' 80' A 5

cot0 8 cot0 A
wss+4 —z@os ——wls

52 80

5/ 2 AS' 2 cot'0
+2 — (wss —wl 1) —2 — (wss+zslop) +4 wp1+ — (wso —

zsl „s)5 AS

+k (wll —ass)+2 ——— woo . (38)
A

All the zv's on the right-hand sides of these equations
are tetrad components. Note that the set of 10 equations
breaks up into two independent sets: three equations
for zo3, zv~~, and +2~, and seven equations for the other
components. As a test of the correctness of the algebra,
the author has twice computed the above from. their
de6nitions. Also the contraction of the m, part of
these equations gives the correct form for m'„and

when ~„=g „ the above expressions yield —g„„as
they should.

The functions V"'~", satisfy the boundary-value
equation (5) and

(39)
For the evaluation of these functions in the case of the
Robertson-Walker metrics, it will be useful to Ina, ke a.
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change of variables defined by

a

A(. )A(.)s(~x)

In terms of the f's the characteristic boundary-value
equation is

Bf,;/88=0,
fo2= fo3= fu= fi3= f~a=o, (42)

2= 33 ~

I.et f;; be the ONT representa, tion of f p, where we
have suppressed the primes for the sake of clarity. It
follows from Eqs. (29)—(41) that

f s, o.&f ~, i. ~ig p. (A/A+k)+A'E ~ . (41) The nontrivial equations for the f,; are thus

A S' A' A A ~-

0 =foo —fir" fool +k +4 foi'+ foi 6 foo 2
l fii+2fi27+2 l fii+2f227, (43)

kA A S A A A

A- S' — S' ' A
0=fii —fii" fii —+—k +4—foi' ——foi +4 l fir —faa7 2 (fii+foo)

5 5
A ' A' (A)'-4 —+~ f. +2 —-I —

I foo, (44)
&Ai

g/ A AS'
0=fig —f22"—F2 —+k +2 — (f22 —fii) —2 — (f~u+ foo)+4 foi

5 As
2 A 2-

+k (fii+f22)+2 ——— foo, (45)
A

pA" A S'
0 =foi foi" —foi—

l

—+k +2—foo'+ fii' — (foo+fii)s
— ps' ' A '- As'

+ 2l ——6 — foi+4 (fir —f2~)+ ——
l foi ~ (46)

kS A AS Ai

The characteristic boundary-value equations are

1 A A ('2)'
foo+ foo'~2 foi= ——+k+6 ——

l

—l, (47)
2 A A (Ai

A
foi+ foi'~ (foo+fii) =0,

A 1 A" /A
fii~fii'~2 —foi = —— 3—+5k+2l —,(49)

2

I A '-
f22+ f22'= —— 3—+5k+2 — . (50)

2

For Minkowski. i space-time, the right-hand sides of
Eqs. (47)—(50) are all zero, and thus all of the f;; are
zero. (In fact, it is easily shown that all of the V p „„
are zero for Minkowski space-time. )

For the nonempty models, the metric is well behaved
when r is in the range 0(r( ~ (k =0, —1) or 0(r(
mn-/2 (k=+1). If both To and rr are in this range then

fj'(xo xf) is well de6ned, and when A (r) is analytical in
the interval ro to rr, f;,(xo,xr) is also."However, for
the evaluation of I„p,we need to know the behavior of

f;;(xo,xr) in the limit as rr —+ 0, and the metric is not
well behaved in that limit. We shall now prove that,
despite the singular behavior of the metric at 7 =0, f,;
remains finite in the limit 7-y ~ 0.

Suppose to the contrary that the f;; are not all finite
in the limit rr —& 0. Then let fe(r*,X*,vr, 0) be the most
singular f,; in that limit where x~ is some point (with
ro) Tr~& 0) that maximizes the order of the singularity
of f,; in that limit. Then let us define, for r~) sr~) 0,

C( r)=—l lf ( *,*r)l+17-'

a;, (xo,xr) =C(rg)f;;— (51)

The range of C(rr) is clearly 0 to 1. The a;; are nonsin
gular in the limit v.f ~ 0 and are not all zero in that
limit. The assumption that f~ is singular in the limit
~J —& 0 implies that

lirn C(rr) =0.
Vf~o

(52)

Ke turn now to the differential and boundary-value
equations (43)—(50). Note that these are local equations

» Cf. J. Hadamard, Lectlres on CancIIy's ProbLesn in Linear
PartiaL DQferentiaL Equations (Yale U. P., New Haven, 1923);
and Ref. 5.
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where
f;,( „x„0,0) =f;,'(r„x,),

then it is easily shown that f;, and thus Bf;;/Brr, are
nonsingular in the limit 7f —+0. The proof goes as
follows. For any given point xp, both f;; and f,dP must
satisfy the differential equations (43)—(46) regardless
of the value of rr (we continue to require rf(rp) Tllus.
f; must also satisfy these differential equations. As for
the boundary conditions, we have to 6rst order in rJ,

B C Lf'd(«, xp, rx,0)7= B C Lf'Ã(«, xo+ri) j, (54)

which implies, again to fj.rst order in ry,

8
B.C. t f,,'(rp, Xp,rf,0)]=B.C. — f,,'(r p, Xp) . (55)

QXp

at xp, not xf, and the boundary is the future light cone
of xr. The f,, must satisfy these equations for rr)0,
and so must satisfy them in the limit r~ —+ 0. Because
these are equations at xp, we are free to multiply them
by C(rr), thus changing variables from f;; to a,;. The
a;; must then satisfy the transformed equations for
rp&0 and so also in the limit re~ 0. The boundary
values for f;; are nonsingular in the limit r~ ~ 0. The
boundary values for the a;, are equal to the boundary
values for the f;; multiplied by C(r), and so are all zero
in the limit ry —+ 0 whenever C(r) is also zero in that
limit. But the unique solution with all zero boundary
values is zero, i.e., all of the a;; must be zero in the limit
r~~ 0. Yet the a;, cannot all be zero in that limit if f*
is singular in that limit. Thus all of the f;; must be
nonsingular in the limit ry ~ 0. Then C(rr) is nonzero
in that the limit and the contradiction is avoided.

If we write

f,, (r, ,X„rf,0) =f,,P(r, ,X,)+grf, (r, ,Xp, rr, 0), (53)

In the SWG formalism, the surface integral is a solution
to the homogeneous wave equation, i.e., D„„„'g"=0.
This property of the surface integral and Eqs. (33), (36),
(42), and (57) require that 'gpi ——0. Thus for the Robert-
son-Walker metrics and with BQ a surface of constant
r, g;; is diagonal with two independent functions
gpp and g]y.

This surface integral can be written as Lsee Eqs.
(1), (4), and (28)7

a- "
&,,~(~r Sx)—

'g;, (r', r) = —A'(r)—
p A r' A r 5 Ax

+V;;"„dd (I'))S'(x)dx (58)

"q;;td(Ar —AX)S'(X) rt, ,$(hr)

p A (r') A (r)S(AX) A (r')A(r)
(59)

For the second part of the integral, it is convenient to
introduce a change of variables such that

f d(r' X' r 0)= (1/~r)I";(r', X,r), (60)

We are here using a spherical coordinate system centered
at x'. The points (xp,xr) are here replaced by (x',x).
The shift of coordinate center from xj to xp is easily
handled by the tensor calculus and turns out to be trivial
leaving the functions of interest unchanged. We are
continuing to suppress the primes on the ONT com-
ponent indices, but it should be understood that these
indices refer to x'. We have integrated over 0 and p
since G;,", is independent of them. g;, is the Minkowski
metric diag(1, —1, —1, —1). For the first part of the
integral we 6nd

Here B.C. is the operator used in the left-hand sides of
Eqs. (47)—(50). Because of the nonsingular behavior of
fddP, and because of the differential equations that it
satisfies, the right-hand side of Eq. (55) inust be non-
singular. Thus the bounda, ry values for f,,' remain non-
singular as 7f —+0, and as we saw above in the case of

f;;, this requires tha, t f;;remain nonsin, gular in that
limit.

Surface Integral

J,,(r', r) =

Then Eq. (58) becomes

' S(hx)—F '7'dP .
S(~r)

where y= x'/d r. Let us def'ine

(61)

We shall choose our volume of integration to be
such that in and on the past light cone, BQ is a surface
of constant r. This is done both for simplicity and be-
cause BQq is a surface of constant 7, i.e., r=0. Because
of the spatial homogeneity of the Roberston-Walker
metrics, we can write

'g- e (*',~ft) = 'g"e (r', r) (56)

With this choice of BQ, the spatial isotropy of the
Roberston-Walker metrics requires, for the OXT com-
ponents, that

S(hr)A(r) cj—J,;. (62)
A(r') ar

We can apply Eq. (62) immediately to Minkowski
space-time. Because it is an empty space-time, we know
that we Tnust have, in terms of ONT components,

gran= g22= g33 (57) gay'= gag= peg. (63)
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I;;(r') =lim 2g, ,(r', r) .
v~0

(64)

From the behavior of f;,, we know that we can write

J;,(r', r) =J,,p(r')+rJ, ,'(r', r), (65)

where both J;,' and J;,' are nonsingular. Since A (r) —+ 0
as 7- —+ 0, the limit reduces to

This is easily confirmed from Eq. (62). Since all of the
t/'

p „are zero for Minkowski space-time, J;; is also
zero. Thus Eq. (63) will hold if the first bracket in Eq.
(62) is equal to 1. Both forms of the metric LEqs. (15)
and (16)] provide the desired result. This provides a
nice check on our algebra and the covariance of our
equations. Clearly, Minkowski space-time is a Class-II
solution.

We turn now to the nonempty Robertson-Walker
models. Applying the definition of the source-free con-
tribution to our particular case, we have

The regularity of V p „„implies that all of the Ii;; are
zero at y=0. The boundary values at y=1 are Prom
Eqs. (47)—(50)]

Pop+ 2 mFp 1=K 7m m—],
F01+m(F00+ F11)

F11+2mP01 ——
—2,pm2 —3m],

F22=-', Lsm' —3m].

P3)

(74)

(75)

(76)

We can obtain J;,' from these equations by multiply-
ing by y and integrating from zero to one Lsee Eq. (61)].
Combining Eqs. ('74) and (75), and making use of the
boundary conditions, we And

7m —m'= Pm' —m) Jop'

+2(m'+m) (J'11'+2J22'), (77)

3(5m' —3m) = (7m2 —m) (J11'+2J22')
+6(m'+m) Jpop. P8)

From Eqs. (57) and (66) we have J110=J220, so the
(66) above equations require, for all m,

s(& )
I;,(2.') = (g;,+I;;0) lim A (7 ) .

A(r') ' '
(79)Joo'= —1, J110=+1

This is zero when A(0) is zero (e.g. , m) 1), or when

J,,p= —q;;. ~e shall now show that even when the Thus for k=0 and a y-law equation of state J;, (r')
first condition does not hold, the second does. = —q,; and I,,(r') =0.

&=0 Case

We begin by considering the simple but illustrative
group of metrics that are flat (k=0) and arise from a
&-law equation of state )Eq. (9)]. For these metrics
the field equations for f;; are homogeneous" in X' and
7' and the boundary values are homogeneous of degree
—1.This homogeneity and the uniqueness of the Green's
functions imply that f;; can be expressed as

With
fr(r', &') = (1/~) P';(y) (67)

dF;,/dy= F;,', d'F;, /d—y'= F,,", —(68)

0= (y' 1)F22"+—4yF22' (5m' m—2 2—/y')—F22—

+4mP01/y —2(m'+ 1/y')Pll 2(m +m)P00 (71)

0= (y' —1)Foi"+4yPoi'+ (2 —m'+2/y')Fol
+2m(P00 +F11 (1/y)(Pop+F11))

+ (4m/y) (F11 F22) . (72)—
~ I am indebted to Prof. Martin Kruskal for this insight.

the nontrivial equations for F,,(y) are Prom Eqs. (43)—
(46)]

0= (y' —1)Poo"+4yPop' —(7m' —m —2)Ppp

+4m(F01'+F01/y) —2(m'+m) (F11+2F22), (69)

0= (y' —1)F11"+4yF11'—(3m' —m —2 —4/y') F11

+4m(P01 P01/y) —4(m'+ 1/y') P22
—2(m2+m)Fpp (70)

General Case

Let us define the functions Q,,(7') by

(80)

From Eq. (66) we see that I;,(r') equals zero whenever

Q;;(r') equals zero and/or A(r) equals zero in the limit
r ~ 0. Because of the properties of 'g;.;, Q;;(r') must be
diagonal with two independent functions Qpp and Q11,
and must satisfy the following differential equations Lsee
Eqs. (29) and (33)7:

A '
0=Qoo —

Qoo
—+k+6-

3
A" (A

+6 ——2i — Q11, (81)

A. Aq
'-

0 =Q11—Q11 —+5k+6 —
~

Ai

Ay/'-

g 2 —2
~ Qpp (82)

Consider those Roberston-Walker cosmologies for
which A(r) can be expressed as a generalized power
series in z, i.e.,

Sl
QQ

A(7)=A0 " — g a,r'.
fg s=0
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This class of cosmologies includes those given by Eqs. value is
(11)—(13), as well as many models with smoothly
varying equations of state. For these models, Eqs. (81)
and (82) can be written as

[(2v3 —1)'+48(7+2V3))"'—(2V3 —1)

2(7+2v3)

~ ~

O=ess—
(7m' —m) (m'+m)

B,(.)e..-6 B.( ')e, (84)
=0.959. (91)

O=Qtt—
(7m' —m) (m'+m)

Bs(& )Q» —2 Bs(& )Q«& (85)

where the functions Bt(r'), Bs(r'), and Bs(~') can all
be given in terms of power series in w', and are normal-
ized so that

(86)Bt(0) =Bs(0)=Bs(0)= 1.

Under these conditions, Eqs. (84) and (85) can be
solved by means of a generalized power series of the
form'4

e„( )=z Q„-( )--, (87)

where Q~i"'s are constant, and p is given by

p= —,'a-', {1+4[7m'—ma2v3(m'+m)7)'". (88)

The two & signs are independent, leading to four values
of p for each value of m. The Q~i" are obtained from re-
cursion relations that leave only the Q,is terms un-

specified.
We now can compare this series representation with

the corresponding series obtainable from Eq. (80).
S(r') can be given by an ordinary power series in 7'

[see Eq. (8)j. Likewise, it is easily shown from Eqs.
(83), (79), (61), and (43)—(50) that J; (r') has the form

With m= m~, the largest value of p is 4, and the other
three values of p are noninteger or smaller than two.

We have now shown that Q,,(r') must be expressible
by both an ordinary power series and the generalized
power series, Eq. (87). This requires that, unless m
equals m& or m&, Q;,(r') must be zero for —', &m&1.
For m equal to mt or m&, e,;(7') could be anything. lf
we assume, however, that Be,,(r')/Bm is nonsingular in
the range ta& m& 1, then Q;,(r') must be zero throughout
the range ~&m&1. There are no apparent physicaI
singularities associated with changes in m in the range
—,'&m&1, so this assumption should hold.

To summarize, we have now proven that I;,=0 for
the following types of Robertson-Walker metrics that
are solutions of Einstein s fieM equations with A= 0 and
which are nonempty: (1) all metrics with lim, sBA (7)/
Br=0; (2) all flat models with a y-law equation of
state [A(r) given by Eq. (12)j; (3) All metrics with
A (r) given by a generalized power series in r [Eq. (83))
and with 2&m&my, my&m&m2, or m2&m&1.

These groups of metrics cover a broad range and sug-
gest that probably all nonempty relativistic Robertson-
Walker models with h. =O and 0&p& pc' have I,,=O,
and are thus Class-I solutions.

Schwarzschild-Type Cosmologies

We now investigate what we shall call Schwarzschild-
type solutions. That is, we consider metrics of the form

gPv ~yv+ jgpv (92)

~*'( ')= v*+2 It "(—')" (89) where, in terms of our above spherical coordinate system
with X'=0,

h4" = a&"/X =0(1/X) for large X.

1
al'" =a""(r,&)= — a~" sine d—ed'

4x

and let us assume that

Thus Q;;(r') must be expressible as an ordinary power
series with the lowest power being greater than or Let us define
equal to 2.

The generalized exponent p takes on an integer value
greater than or equal to two for two values of m be-
tween —', and 1. The first value is

(93)

(94)

[(2%3—1)'+24(7+2v3) )'"—(2v3 —1)

2(7+2v3)
(95)

=0.648. (90)

With m= m~, the largest value of p is 3. The other three
values of p are noninteger or smaller than two. The other

24 Cf. M. H. Protter and C. B. Morrey, Modern Mathenzatzcal
Analysis (Addison-Wesley, Palo Alto, 1964), p. 720.

That is, metrics of this type approach Qatness asymptoti-
cally at least as fast as the Schwarzschild solution.

We can determine I„,for these metrics by using the
first-order integrals given by Sciama, Waylen, and the
author" together with the 6-reen's function for Minkow-

2' gee Ref, f.
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sk.l space) which ls

t. g„„g, ,
(i „„;,~ = — fI(hr —AX).

2x DX

Thus, to erst order in h&", we have

'g""=)i"" 1+rh,„a4"(r,Ar)

(96)

tion to the 6eld. Thus we conclude that these Kantowski-
Sachs-Thorne models are also of Class II. (We expect in
general that any class of cosmological models with the
property that, going from no matter-energy to some
matter-energy leaves the qualitative features of the
solution largely unchanged, will be of Class II or Class
~&~ )

IV. DISCUSSION

Hy Eqs. (3) and (95),

I "'= lim 'g""=)i""+0((h"")') (98)

Kantowski-Sachs-Thorne Cosmologies

Finally, let us consider a class of homogeneous but
anisotropic cosmological models due to Kantowski and
Sachs" and Thorne, '~ i.e.,

where

ds'= dr' —f(r)d X'—5'(r) d0',

r =n(/+sing),

5(r) =n(1+cosP),

sinPP sing
f( ) =A,(2+ +C

1+cosP 1+cosP

(99)

(100)

(101)

(102)

and n, C, and Ao are constants. ' This metric is for a
dust-filled (i.e., zero-pressure) model. As is related to
the rnatter density in such a way that when 20= 0, the
model is empty. In this case the model reduces to the
interior Kruskal solution. For that part of the interior
Kruskal solution with d5(r)/dr) 0 (the lower quadrant
of the Kruskal diagram), the solution acts as a full
cosmological model for our purposes. That is, the past
light cone of any point in that part of the solution is
contained entirely within the part of the solution.
Since the Kruskal solution is empty, it is entirely source-
free, and so it is of Class II. It is clear from the above
equations that adding mat ter to the Kruskal solution,
i.e., 20&0, does not alter the qualitative character of
the metric enough to eliminate the source-free contribu-

~~ R. Kantowski and R. K. Sachs, J. Math. Phys. '7, 443 (1966).
27 K. S. Thorne, Astrophys. J. 148, 51 (1967).

We are using Pajk's {Ref.13) form of this metric.

Cosmological models with this Schwarzschild-type
metric are spatially infinite with Minkowskian bound-

ary conditions. Many of them have T„,WO in only a
finite region of space (e.g. , the Schwarzschild and Kerr
solutions with appropriate interior solutions). They are
all of either Class II or Class III since Class I solutions
must have I„„=0 everywhere while Schwarzschild-type
solutions have I„„p„„if not everywhere, then at least
throughout most of their volume.

The results obtained above can be summarized as
follows:

Class ISolutson-s: Many (probably all) nonempty
general relativistic Robertson-Walker models with
A = 0 and 0&p& pc'.

Class-II Solutions: Minkowski space, the Schwarz-
child and Kerr solutions with appropriate interior
solutions, and the Kantowski-Sachs-Thorne solutions.

Clgss-II or Class-III Solutions: All Schwarzschild-
type solutions, and all vacuum cosmological solutions
(T„„=0 everywhere).

Class-III Solutions: All solutions with A./ 0, including
the Godel rotating model.

These preliminary results are encouraging since the
supposedly Machian class (Class I) contains the obser-
vationally plausible Robertson-Walker models, while
it excludes the traditionally anti-Mach Minkowski,
Schwarzschild, and Godel models. Pet many questions
remain. For example, are there any homogeneous but
anisotropic Class-I solutions? Are there any inhomo-
geneous Class-I solutions?

If in fact the only Class-I solutions are of the Robert-
son-Walker type, this would pose a problem for the
theory since the real world is not strictly homogeneous.
It is, however, important to remember that the theory
presented here is classical, i.e., nonquantum. In a
quantum theory of the IG field, we would expect the
condition I„„=O to be replaced by (I„,)=0, where the
brackets indicate the expectation value. This change
would presumably leave the global character of Class-I
solutions unchanged, but permit small-scale inhomo-
geneity. In this connection, it is interesting to note that
Harrison" has suggested that quantum fIuctuations in
the IG field during the early moments of the universe
may be required to explain the existence of galaxies.
This is still all speculation since there is as yet no
quantum theory of the IG field, but it suggests that
inhomogeneity even on the scale of galaxies may be of
too small a scale to be considered in classical cosmo-
logical theories.
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The response of operators of a quantum field theory to variations of the metric tensor is investigated. A

class of operators, defined in a previous publication, is shown to include all physically relevant fields and
currents. The response of such objects to variations of g„„is found and shown to be unique. The commutators
[Tl'"(x),A (x') j, where A is any such operator, are discussed. For ts=0 (or v=0), these commutators are
displayed and depend only upon the tensor structure of A and its equation of motion. However, for p, v

=i,j we find that the time derivative of the varied quantity appears in the field equations, for which the
usual derivation of equal-time commutators is incomplete.

I. INTRODUCTION

'HE variational action principle has been employed
to obtain equal-time commutators (ETC's) of.

various operators. ' How an external gravitational field

would couple to matter is presumed to be contained in
the generally covariant form of the theory. However,
the behavior of the fundamental fields (appearing in
the Lagrangian) upon varia, tion of g„„ is not evident,
but is crucial to the application of the action principle.
Although it is believed that this behavior may be
chosen at will, we shall present a physical argument
which uniquely specifies it.

In a previous work, ' we have investigated the be-
havior of tensors and spinor-tensors upon variation of

gpp. The criterion required for our results to be valid
was that the objects be tensors (or spinor-tensors) for
local coordinatelike transformations which may change
the curvature but leave the description of the point
under consideration Axed. We shall hereafter use the
words "point-local" tensor (or spinor-tensor) to desig-

nate such objects. In Sec. II we elaborate upon the
validity of our criterion. We show that our physical
argument justifies our assumption that the fields are
point local.

In this work, we also investigate the uniqueness of
the choice of the local coordinate transformation to be
employed to mimic an external gravitational Geld.
For variations of g„„, we shall see that the choice is
limited, and this determines a unique behavior for
point-local objects. The uniqueness arises from the
nature of the action principle (viz. , the derivation of
the ETC's'). We proceed to treat variations of gv;, and

' J. Schwinger, Phys. Rev. 130, 406 (1963).
~ J. C. Katzin and W. S. Rolnick, Phys. Rev. 182, 1403 (1969).

obtain results analogous to those of Ref. 2. We And that
for variations of g;;, Bobg,, appears in the field equations
and the derivation of ETC's in Ref. 1 is not complete.
In another work, these cases will be investigated.

Ke proceed in this paper, as was done in Ref. 2 as
well, to ignore the question of limits of nonlocal ex-
pressions which may be necessary to represent physi-
cally meaningful objects. As indicated there, a complete
reformulation of quantum field theory may be required.
Since the problem is due to the meaninglessness of
products of distributions, it is a disease of any theory
employing such objects (e.g. , the Sugawara model, as
discussed by Coleman, Gross, and Jackiw'). If the
quantum action principle can be given a consistent
foundation, at a certain stage of the procedure, point-
local objects will be present. Furthermore, if the varia-
tion of g„„may be taken after the limit of the nonlocal
expression under consideration, then the results of this
work will be applicable. 4

II. POINT LOCALITY

The response of point-local operators to a variation
of goo was found in Ref. 2 by varying the coordinate
system at the space-time point in a particular way.

Our approach there' is summarized as follows: We
consider a flat space (with a coordinate system denoted
by barred quantities). We introduce at the point under
consideration (P), a local observer (with a coordinate
system denoted by unbarred quantities). The descrip-
tion of the point I' is the same to both observers, viz. ,

x„(P)=x„(P),
' S. Coleman, D. Gross, and R. Jackiw, Phys. Rev. 180, 1359

(1969).
4 M. Sheinblatt and R. Arnowitt, Phys. Rev. D 1, 1603 (1970).


