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On the Hoyle-Narlikar theory of gravitation

By S. W. HawkING
Department of Applied Mathematics and Theoretical Physics, Cambridge

(Communicated by H. Bondi, F.R.S.—Received 8 October 1964—
Revised 11 February 1965)

It is shown that the direct-particle action-principle from which Hoyle & Narlikar derive
their new theory of gravitation not only yields the Einstein field-equations in the ‘smooth-
fluid’ approximation, but also implies that the ‘m’-field be given by the sum of half the
retarded field and half the advanced field calculated from the world-lines of the particles.
This is in effect a boundary condition for the Einstein equations, and it appears that it is
incompatible with an expanding universe since the advanced field would be infinite. A possible
way of overcoming this difficulty would be to allow the existence of negative mass.

1. INTRODUCTION

The success of Maxwell’s equations has led to electrodynamics being normally
formulated in terms of fields that have degrees of freedom independent of the
particles in them. However, Gauss suggested that an action-at-a-distance theory
in which the action travelled at a finite velocity might be possible. This idea was
developed by Wheeler & Feynman (1945, 1949) who derived their theory from an
action-principle that involved only direct interactions between pairs of particles.
A feature of this theory was that the ‘pseudo’-fields introduced are the half-
retarded plus half-advanced fields calculated from the world-lines of the particles.
However, Wheeler & Feynman, and in a different way Hogarth (1962), were able
to show that, provided certain cosmological conditions were satisfied, these fields
could combine to give the observed field. Hoyle & Narlikar (1964a) extended the
theory to general space-times and obtained similar theories for their ‘C’-field
(1964b) and for the gravitational field (1964c). It is with these theories that the
present paper is concerned. It will be shown that in an expanding universe the
advanced fields are infinite, and the retarded fields finite. This is because, unlike
electric charges, all masses have the same sign.

2. NoTATION

Space-time is represented by a four-dimensional Riemannian space with metric
tensor g,; of signature —2. Covariant differentiation in this space is indicated by
a semi-colon. Particles are labelled a, b, ..., and da, db, ... represent the differential
of proper time along the world-lines of @, b, ... respectively. When there is doubt as
to which point a covariant derivative is to be taken at, a suffix will be added to the
appropriate indices. The suffix ¢ will indicate covariant differentiation at a point
on the world-line of particle @, and so on.

BHX, X') = 8(X, — X7) 8(X,— X3) 8(X5— X§) 8(X, — X3,
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where X,, X,, X,, X, are the coordinates of the point X, and §(Y) is the Dirac
delta-function. The operator [] is defined by

[f = g'f.;; for any function f.

3. THE BOUNDARY CONDITION
Hoyle & Narlikar derive their theory from the action

A= ZfoG(CL, b) dadb,

a=+b

where the integration is over the world-lines of particles @, b, .... In this expression,
G is a Green function that satisfies the wave equation:
4 ’
60, X, yg + 4RO, X = 20220,
where gis the determinant of g,;. Since the double sum in the action 4 is symmetrical
between all pairs of particles a,b, only that part of G(a,b) that is symmetrical
between a and b will contribute to the action A4, i.e. the action can be written

A=Y foG*(a,b)da,db,

a+b
where G*(a,b) = 1G(a,b) +1G(b,a). Thus G* must be the time-symmetric Green
function, and can be written: G* = 1G ., + 30,4, Where G, and G,4, are the
retarded and advanced Green functions. By requiring that the action be stationary
under variations of the g;;, Hoyle & Narlikar obtain the field-equations:

[E*Zb: Fm N X) mO(X)] (B — 39 B)

= —4L; + Egb% [m(a)(g ik m(;li)‘)r - m(g,}C) + 2(m(;l?ll) m(,I;c) - %g ikrm(a) ;rm(;l;)) ] »
a

where m@(x) = f G*(x,a) da. However, as a consequence of the particular choice of
Green function, the contraction of the field-equations is satisfied identically. There
are thus only 9 equations for the 10 components of g,;, and the system is indeter-
minate.

Hoyle & Narlikar therefore impose Xm@ = m, = constant, as the tenth
equation. By then making the ‘smooth-fluid’ approximation, that is by putting
33 m@m® = m2, they obtain the Einstein field-equations:
a+b

(R, — Ry ) = — Ty
There is an important difference, however, between these field-equations in the
direct-particle interaction theory and in the usual general theory of relativity.
In the general theory of relativity, any metric that satisfies the field-equations is
admissible, but in the direct-particle interaction theory only those solutions of the
field-equations are admissible that satisfy the additional requirement:

my(x) = Zm@(x) = X f G*(z, a)da

12 [ 6.0 041 5 [ G (0,0) e
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This requirement is highly restrictive; it will be shown that it is not satisfied for the
cosmological solutions of the Einstein field-equations, and it appears that it cannot
be satisfied for any models of the universe that either contain an infinite amount of
matter or undergo infinite expansion.

The difficulty is similar to that occurring in Newtonian theory when it is recog-
nized that the universe might be infinite.

The Newtonian potential ¢ obeys the equation:

(¢ =—«p (p>0),
where p is the density.

In an infinite static universe, ¢ would be infinite, since the source always has the
same sign. The difficulty was resolved when it was realized that the universe was
expanding, since in an expanding universe the retarded solution of the above
equation is finite by a sort of ‘red shift’ effect. The advanced solution will be infinite
by a ‘blue shift’ effect. This is unimportant in Newtonian theory, since one is free
to choose the solution of the equation and so may ignore the infinite advanced
solution and take simply the finite retarded solution.

Similarly in the direct-particle interaction theory the m-field satisfies the equation:

Om+3iRm =N (N>0),

where N is the density of world-lines of particles. Asin the Newtonian case, one may
expect that the effect of the expansion of the universe will be to make the retarded
solution finite and the advanced solution infinite. However, one is now not free to
choose the finite retarded solution. For the equation is derived from a direct-
particle interaction action-principle symmetric between pairs of particles, and one
must choose for m half the sum of the retarded and advanced solutions. We would
expect this to be infinite, and this is shown to be so in the next section.

4. THE COSMOLOGICAL SOLUTIONS

The Robertson-Walker cosmological metrics have the form

dr2?
1—-Kr?

Since they are conformally flat, one can choose coordinates in which they become

ds? = Q2[dr2—dp? + p2dO? + p?sin? 0 d¢p?],

st = - R [ L a0 sin0 0|

= Q%,, dz* da?
where 7, is the flat-space metric tensor and
Q=0 B)

)= O EK G P+ K1)
(cf. Infeld & Schild 1945).
For example, for the Einstein—de Sitter universe

K=0, Rt)=@¢T)? (0<t<co),
Q=R=(7[T)? (0<7<c0),
r=p (r=T3).
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For the steady-state (de Sitter) universe
K=0, R({)=et/T (—oo<t<ow),
Q=R=-Tjt (—0<71<0),
r=p (r=-TeT).

The Green function G*(a, b) obeys the equation
[1G*(a,b) + tRG*(a,b) = 6%(a,b)// —g.
From this it follows that

14 & & &
. 2pab_ " (yx) 4 Y b " —3(rk — Q-4 54
3 (Q y o O )+W (na et Q) Q3G = Q-464(a,b).

If we let G* = Q-1§, then

9 (yav 0 g\ — g1
ana (7]“ 890”8) = 0%(a, b).

This is simply the flat-space Green function equation, and hence

. QY1) [Sp—Ty+T) | Sp+Ty—1Ty)
G*(11,0; 79, p) = 877 : [ Q(Tz)p Q(ry) p 1 ]

The ‘m’-field is given by
m(ry) = [ G =gt = §me )
For universes without creation (e.g. the Einstein—de Sitter universe), N = R~3n,

n = const. For universes with creation (steady state) N = n, n = const.,

NQ3(r
Mg ) = @74,) [ O amrear,

where the integration is over the future light cone. This will normally be infinite in
an expanding universe, e.g. in the Einstein-de Sitter universe

Mager) = () [ atri=ryar,

71

= 0.
In the steady-state universe

— P\ 1[0 3
maaer) = (55) [ =n (7)) e an
e o]

By contrast, on the other hand, we have

73

NQ
M (1) = 07ry) [

47rr2dr,

where the integration is over the past light cone. This will normally be finite, e.g.
in the Einstein—de Sitter universe

-2 7
Myet (T1) = (%) f —n(Ty—71)d7y = {0 T2,

0
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while in the steady-state universe

Mipet, (T1) = — (:—7—7) ~1f11 n (z)3 (Ty—7y)d7y = T2

Ty - \Tg
Thus it can be seen that the solution m = const. of the equation
(Jm+ERm = N

is not, in a cosmological metric, the half-advanced plus half-retarded solution since
this would be infinite. In fact, in the case of the Einstein-de Sitter and steady-state
metrics, it is the pure retarded solution.

5. CoNcLUSION

It is one of the weaknesses of the Einstein theory of relativity that although it
furnishes field-equations it does not provide boundary conditions for them. Thus
it does not give a unique model for the universe but allows a whole series of models.
Clearly a theory that provided boundary conditions and thus restricted the possible
solutions would be very attractive. The Hoyle-Narlikar theory does just that (the
requirement that m = }m,y + 3m,q,. is equivalent to a boundary condition).
Unfortunately, as we have seen above, this condition excludes those models that
seem to correspond to the actual universe, namely the Robertson-Walker models.

The calculations given above have considered the universe as being filled with a
uniform distribution of matter. This is legitimate if we are able to make the ‘smooth-
fluid’ approximation to obtain the Einstein equations. Alternatively if this approxi-
mation is invalid, it cannot be said that the theory yields the Einstein equations.

It might possibly be that local irregularities could make m, 4, finite, but this has
certainly not been demonstrated and seems unlikely in view of the fact that, in the
Hoyle-Narlikar direct-particle interaction theory of their ‘C’-field, which is derived
from a very similar action-principle, it can be shown without assuming a smooth
distribution that the advanced ‘O’ field will be infinite in an expanding universe
with creation (see Appendix).

The reason that it is possible to formulate a direct-particle interaction theory of
electrodynamics that does not encounter this difficulty of having the advanced
solution infinite is that in electrodynamics there are equal numbers of sources of
positive and negative sign. Their fields can cancel each other out and the total
field can be zero apart from local irregularities. This suggests that a possible way
to save the Hoyle-Narlikar theory would be to allow masses of both positive and
negative sign. The action would be

4 = E:p%anbf G*(CL, b) da db (sz == 1)7

where ¢,, ¢, are gravitational charges analogous to electric charges. Particles of
positive ¢ in a positive ‘m’-field and particles of negative ¢ in a negative ‘m’-field
would have the normal gravitational properties, that is, they would have positive
gravitational and inertial masses. A particle of negative ¢ in a positive ‘m’-field
would still follow a geodesic. Therefore it would be attracted by a particle of

21 Vol. 286. A.
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positive g. Its own gravitational effect however would be to repel all other particles.
Thus it would have the properties of the negative mass described by Bondi (1957);
that is, negative gravitational mass and negative inertial mass.

Since there does not seem to be any matter having these properties in our region
of space (where m == const. > 0), there must clearly be separation on a very large
scale. It would not be possible to identify particles of negative ¢ with antimatter,
since it is known that antimatter has positive inertial mass. However, the intro-
duction of negative masses would probably raise more difficulties than it would
solve.

The author would like to thank Professor F. Hoyle, F.R.S. and Drd. V. Narlikar for
making available the manuscripts of their papers and for discussions on them, and
also to thank Dr D. W. Sciama for his help in preparing this paper.

ArpEnDpIX. THE ‘C’-FIELD

Hoyle & Narlikar derive their direct-particle interaction theory of the ‘C’-field
from the action

A=3% f f (@, b).5,1,, da’ dbF,

a=+b

where the suffixes «, b refer to differentiation of G(a,b) on the world-lines of a, b
respectively. G is a Green function obeying the equation

OGX, X') = 84X, X)) —g.
We define the ‘C’-field by

Clx)=2% f G(2,a).; da’.
and the matter-current J* by
74() = = [03.0) v
010) = [ 8. ) o g,
DO = Jk;k.

Then

We thus see that the sources of the ‘C'’-field are the places where matter is created,
or destroyed.
As in the case of the ‘m’-field, the Green function & must be time-symmetric,

that is @(CL, b) = %“@ret.(‘% b) + %éadv.(m b)

Hoyle & Narlikar claim that if the action of the ‘C’-field is included along with
the action of the ‘m’-field, a universe will be obtained that approximates to the
steady-state universe on a large scale although there may be local irregularities. In
this universe, the value of ' will be finite and its gradient time-like and of unit
magnitude.

Given this universe, we may check it for consistency by calculating the advanced
and retarded ‘C’-fields and finding if their sum is finite. We shall not do this directly
but will show that the advanced field is infinite while the retarded field is finite.


http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on September 2, 2012

On the Hoyle—Narlikar theory of gravitation 319

Consider a region in space-time bounded by a three-dimensional space-like
hypersurface D at the present time, and the past light cone X of some point P to
the future of D.

By Gauss’s theorem

f [0y —gdat = @dé’:f.]’.‘k\/—gdx{
v s+D N ’

Let the advanced field produced by sources within ¥ be C’. Then " and oC"[én will

be zero on 2, and hence
J b —g dat =J s,
-

D&’n

But J%, is the rate of creation of matter = n (const.) in the steady-state universe,

and hence '
f 4 dS =naV.

Dan

As the point P is taken further into the future, the volume of the region ¥ tends to
infinity. However, the area of the hypersurface D tends to a finite limit owing to
horizon effects. Therefore the gradient 8C’/on must be infinite. A similar calculation
shows the gradient of the retarded field to be finite. Their sums cannot therefore
give the field of unit gradient required by the Hoyle-Narlikar theory.

It is worth noting that this result was obtained without assumptions of a smooth
distribution of matter or of conformal flatness.
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