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This article reviews the developments in the electrodynamics of direct interparticle action, em-
phasizing the achievements in quantum as well as classical electrodynamics. It is shown that the
application of the Wheeler-Feynman absorber theory of radiation places stringent requirements on
the asymptotic future and past light cones of the universe. All Friedmann cosmologies fail to meet
these requirements, but the steady-state and the quasi-steady-state models have the right kind
of structure to make the theory work. Further, it is shown that the working theory is free from
the problems of divergence that trouble the classical and quantum field theory. In particular, no
renormalization is needed: The bare mass and bare charge of an electron are finite. A few ideas
relating to the response of the universe to a local microscopic experiment are presented as well as
on possible clues to the outstanding issues of foundations of quantum theory.

CONTENTS

I. Historical Background
A. Prom Newton to Gauss
B. The formula for delayed action
C. The problems of action-at-a-distance

electrodynamics
II. The Absorber Theory of Radiation

A.

B.

C.

D.

The problems of classical field theory
1. Explanation of causality
2. Radiation damping
3. The paradox of self-action
The Wheeler-Feynman approach
1. A simple illustrative example
2. The general result
3. Enter cosmology
Cosmological considerations
1. Action at a distance in curved spacetime
2. Cosmological models
3. Conformal transformations
Response of the expanding 'universe

A.

B.
C.
D.

E.

The path-integral approach to quantum mechanics
1. Introduction
2. Path amplitudes
3. The wave function
4. Transition probability
5. Perturbation theory
6. Transition element
7. Influence functional
Absorption and stimulated emission
Spontaneous emission
The complete influence functional and the level
shift formula
The radiation cutofF at the absorber

IV. Relativistic Quantum Electrodynamics
A.
B.

C.

Introduction
The motion of a Dirac particle
1. The nonrelativistic propagator
2. The relativistic free particle
Motion in an external potential
1. The perturbation expansion
2. Vacuum loops

III. Quantum Electrodynamics —Nonrelativistic Process

113
113
114

115
116
116
116
116
117
117
117
119
119
120
120
122
123
123
126
126
126
127
128
128
128
129
130
130
133

136
139
141
141
142
142
142
143
143
144

D. Many particle interactions and the quantum

response of the Universe
1. The problem of many particles
2. The influence functional
3. Self-action
4. Interaction with vacuum loops

V. Cosmological Response: Some Implications
A. Radiative corrections

1. The electron self-energy correction
2. Charge renormalization

B. Response calculation using the S-matrix
formulation

C. Experimental search for advanced potentials
VI. Conclusion
References

145
145
146
148
149
150
150
150
151

152
152
153
154

I. HISTORICAL BACKGROUND

A. From Newton to Gauss

The foundations of theoretical physics were laid by
Isaac Newton's book Philosophiae Naturalis Principia
Mathematica published in the mid-1680s. The laws of
gravitation and dynamics described therein successfully
demonstrated how to explain the various dynamical phe-
nomena ranging from the motions of terrestrial projec-
tiles to the orbits of planets. They also established an
important principle: that with suitable initial conditions
the subsequent behavior of a dynamical system can be
completely determined provided the forces acting on it
are known. Until the advent of quantum mechanics in
the early part of this century, this deterministic view pre-
vailed.

The next addition to fundamental physics came a cen-
tury later with the discovery of the electrical force. The
law of electrical attraction and/or repulsion between un-
like and/or like electrical charges as stated by Coulomb
was strikingly similar to the inverse square law of gravita-
tion. For a comparison we state Newton's and Coulomb's
laws in familiar notation:

Reviews of Modern Physics, Vol. 67, No. 1, January 1995 0034-6861/95/67(1)/113(43) /$13.45 1995 The American Physical Society



Hoyle and Nariikar: Cosmology and electrodynamics

Gmgm2N— r2

KeaC'—
r2 (1.2)

. . . I mould doubtless have published my re-
searches long since mere it not that at the time
I gave them up I had faiLed to find unshat I re
garded as the keystone, Nil actum reputans si

quid superesset agendum: namely, the deriva-
tion of the additionaL forces to be add—ed to
the interaction of eLectrical charges at rest,
when they are both in motion from on —ac-
tion zohich is propagated not instantaneously
but in time as is the case with light. . .

Thus, in a sense Gauss had anticipated the future work
of Maxwell but did not get down to the actual description
of delayed action at a distance with the speed of light
playing the key role. In the postspecial relativity era one
could express the above requirement that the action at
a distance should be a relativistically invariant concept.
Evidently, with its effect traveling at infinite speed the
Newton-Coulomb action at a distance was not consistent
with relativity.

B. The formula for delayed action

The problem posed by Gauss was partially solved in
the early part of this century by Schwarzschild (1903),
Tetrode (1922), and Fokker (1929a, 1929b, 1932). We

[The constant K can be taken as unity by a suitable
choice of units as we shall do hereafter. ]

It is possible that Coulomb may have been inspired
to think in terms of an inverse square law because of
the successes of the law of gravitation. However, the
experiments in electrostatics clearly pointed to such a
law. Also, in spite of their super6cial similarity there
was one fundamental difference between the two laws, a
difference that led to their subsequent development along
difFerent routes. In gravitation there is always attraction
whereas in electrostatics the presence of positive and neg-
ative charges allows both repulsion and attraction to be
present. [Note also that for like charges the rule is of
repuLsion as opposed to attraction in gravitation. ]

The commonality between the two laws, however, ex-
tends beyond the functional (inverse square) form to a
deeper level in that they both assume instantaneous ac-
tion at a distance. So far as gravitation was concerned
there was no apparent confIict with any observation be-
cause of this assumption. In electrodynamics the situ-
ation turned out to be difFerent. It became clear as a
result of several experiments on rapidly moving charges
that the Coulomb law was not suKcient to describe all
the observed details. On March 19, 1845 Gauss in a let-
ter to Weber summarized the di%culty in these words
(Gauss, 1867):

restate below the Fokker formula for delayed action at a
distance in a notation that will be useful for describing
the subsequent developments.

We will use the four-dimensional spacetime notation
that became common after special relativity. Thus (i =
0, 1, 2, 3) will denote the four spacetime coordinates with
x = ct the timelike coordinate and x" (p = 1, 2, 3) the
three spacelike ones. Here c is the speed of light which
occasionally will be set equal to unity to simplify writing.
The same will apply to the Planck symbol 6 which will
be needed in our discussions of quantum electrodynam-
ics. In general the Latin indices shall take four values

0,1,2,3; while the Greek indices will take three values

1,2,3. The summation convention shall be assumed. In
special relativity the line element is given by

ds haik dX dX ) (1.3)

where the metric tensor rL, k = diag(1, —1, —1, —1). In
general relativity, the metric tensor will be denoted by

g, I, . The line element will continue to have the signature
of Eq. (1.3) even in the latter case where the metric
tensor may not be diagonal.

We will also need the Dirac delta function 8(x) which
has the properties

h(x) = 0, for x/0;

b

e eh 8 (s~~ ) rL, g du'd b

In the above expression m is the mass of particle a and
e its electric charge. da is the element of proper time of
particle a. The erst term is the usual inertial term while

the second term is the electrodynamic interaction term.
In the latter, the delta function ensures that the typical
points A and B on the worldlines of a and b interact
if and only if they are connectible by a null ray. This is

This satisfies the identity

q'"b(s~~) „g = H~b(s~~) = —4vrh4(X, A)

where b4 is the four-dimensional delta function for space-
time points X = (x') and A—:(a') and s~& is the square
of the interval between them as computed by (1.3). [A
suKx i following the comma denotes differentiation with
respect to the coordinate x'.

]

In Eq. (1.5) Cl is the wave operator and h(s~2&) is
its Green's function. This identity is valid in the flat
spacetime of special relativity and needs to be generalized
to the curved spacetime of general relativity which we

shall introduce in the following section. For the present
we will work within the framework of special relativity.

Having stated our notation we now write the Fokker
action formula which describes the interaction between
electric charges labeled a, b, c, . . ., etc. as follows:
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another way of saying that the interaction between A and
B propagates with the speed of light. Thus conceptually
at least the program envisioned by Gauss seems to have
been achieved. [See Fig. 1.1.] But how does it work in
practice?

C. The problems of' action-at-a-distance electrodynamics

The formula (1.6) looks quite difFerent from the field
theory action which is usually stated in the form

1J= —) mda-
16vra

F;I,Fi"a'4x

e A, da'.

In the above the particles a, b, c, . . . are not interacting di-
rectly with one another; they do so through the medium
of a field FiA, which is defined in terms of a four-potential
A; by

AI )(X) = es h(s~~)rI;i, db",

F(b) A(b) A(b)
ik k i i,k'

Thus we have a field and a potential associated with each
particle and these identically satisfy the following rela-
tions:

(1.1O)

The field has its own uncountably infinite degrees of free-
dom which are called into play in describing phenomena
like radiation. What is the corresponding picture in the
action at a distance defined by the Fokker formula?

To see the correspondence with the field picture the
following definitions of direct particle potentials and direct
particle fields are useful:

terms of these direct particle fields the variation of the
worldline of a typical particle a gives us the analog of the
Maxwell-Lorentz equations of motion:

d G i (b)d+

bga

Notice that the particle a is acted on by all other particles
6 g a, i.e. , there is no self-action. This absence of self-
action was in fact evident from the Fokker formula which
has in the second term the summation excluding self-
action.

This formulation therefore satisfies the requirement
of relativistic invariance and seems to resemble the
Maxwellian field theory which is already known as a suc-
cessful theory of electrodynamics. There are, however,
several questions that this formulation has to answer be-
fore it can be accepted as a working theory. We list them
below.

(1) The complete time symmetry of the formulation
tells us that the electromagnetic interaction proceeds not
only forward in time but also—in equal strength, it pro-
ceeds backwards in time. Figure 1 illustrates this result.
Thus there is a manifest violation of causality. How can
such a theory explain causal and unidirectional phenom-
ena like radiation?

(2) With no degrees of freedom vested in direct particle
fields, will the theory be able to account for all electro-
dynamic observations' ?

(3) How is the theory described in curved spacetime'?
How does it interact with spacetime geometry'? This
question assumes significance when we recall that the
electromagnetic energy momentum tensor in Einstein's
field equations depends entirely on fields in Maxwell's
theory and that there is no corresponding field term in
the present theory.

(4) The bulk of the effects of electrodynamics fall
within the quantuxn domain. Can the action-at-a-
distance formulation be quantized? Recall again that in
the usual forInulation it is the Geld that is quantized and
here we have no field.

(5) Finally, at a deeper level, we may ask whether this

Time
Ji

J{)(X) = es h4(X, B)rl, i,db". (1.12)

= Space

r

r
r

rrr
rrr

r
r

r

FIG. 1. Typical points A {on the worldline of charge a) and
B {on the worldline of charge b) interact if the dotted line
connecting them is a null ray. However, the interaction can
be both forward {A to B) and backward {Bto A) in time.

Superficially these look similar to the gauge condition,
the field equations, and the wave equation of the Maxwell
field theory. However, these are identities in view of the
definitions (1.9). In fact these "fields" do not have de-
grees of freedom of their own: they are functionals of par-
ticle paths. For this reason it is misleading to call them
fields. We shall refer to them as direct particle fields In.
Rev. Mod. Phys. , Vol. 67, No. 1, January 1995
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II. THE ABSORBER THEORY OF RADIATION

A. The plablems of classical field thealy

The issues raised above vis a vis action at a distance
can be better appreciated against the background. of the
problexns faced by the classical field theory of Maxwell.
We itemize them below although they happen to be in-
terrelated.

1. Explanation of causality

The wave equation satisfied by the four-potential A;
in the Maxwell theory is similar to the relation (1.11)
except that in this case it is a genuine equation rather
than an identity:

A, =4+1;. (2.1)

Here the right-hand side is the current density four-
vector. In terms of our direct particle definition (1.12) it
is the sum of all such four vectors.

In solving any problem in Beld theory involving the
above equation, it is common practice to choose those
solutions of Eq. (2.1) that are consistent w'ith the prin-
ciple of causality. The most fundamental problem is the
one referred to by Gauss (1867), viz. that of the accel-
erated electric charge. It is well known that the wave
equation (2.1) has two independent basic solutions, one
having support on the future light cone (the so-called
retarded solution) and the other having support on the

new formulation fares better than the standard field the-
ory.

These challenges have been addressed by various work-
ers over a span of several decades. In this review we will
summarize the progress in light of the above questions.
We begin with the seminal work of Wheeler and Feynman
first reported in this journal nearly Bfty years ago.

past light cone (the advanced solution). Symbolically we

will denote these solutions by A,
' and A, , respec-

tively, for the potentials and by I",k' and I",.& for the
corresponding fields.

Now in the problem of the accelerated charge, it is
customary to select the retarded solution to describe the
physical situation. The advanced solution is rejected on
the grounds of causality. Thus it is argued that it is
physically realistic to have the charge radiating electro-
magnetic waves which travel outwards from it and reach a
distant point at a later instant; and the retarded solution
describes this situation. The advanced solution describ-
ing waves converging from infinity onto the source charge
and crossing a distant point before they reach the source
is manifestly unrealistic. Hence the retarded solution is
the reasonable one.

While this procedure is entirely consistent with physi-
cal reality, at a deeper level it is incomplete; for it does
not take us any further towards understanding why the
principle of causality should operate. Expressed in a
somewhat diKerent form, the phenomenon of radiation
by the accelerated electric charge is a unidirectional one
in terms of time whereas the basic Maxwell equations
are time symmetric. The question therefore is, why do
we have an electrodynamic arrow of timeF Field theory
does not oKer any answer. It stops at providing a scenario
consistent with causality. The choice of the retarded so-
lution is imposed ad hoc rather than deduced.

2. Radiation damping

As a result of the choice of the retarded solution and
the phenomenon of radiation by the accelerated charge,
the charge loses energy and its motion is damped. It
is possible to compute the damping force on the charge
by using the law of conservation of energy and momen-
tum. In the notation of the preceding section, the equa-
tion of motion of a typical charge a is modified from the
Maxwell-Lorentz form to the following:

(2 2)

The F'
& term here denotes the external fietd acting

on the charge. The extra term on the right-hand side is
the damping force. Notice that it has not been deduced
from the basic field theory action whose Lagrangian only
gives the Lorentz force. It has been put in from the
requirement of energy loss by radiation. For example, if
we had chosen a time-symmetric solution, i.e. , a solution
with half the advanced plus half the retarded fields then
there would be no emission of radiation and no damping.

In a highly perceptive discussion of the problem Dirac
(1938b) had provided a new modus operandi for the com-
putation of the force of radiative damping. His prescrip-

+(a)i ~ +(a) ret i +(a) adv i
Ic 2 k (2.3)

Here B '
k is evaluated at the electric charge a. Al-

though both the advanced and retarded fields due to the
motion of a diverge on the worldline of a, their difFerence
is Bnite and as shown by Dirac, its force on the charge is
exactly equal to the extra term in Eq. (2.2). Thus the

tion was as follows. To the field I"'
A, used in computing

the I orentz force in Eq. (2.2) add an extra field
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m = e E'@+A
da2 da

(2.4)

with the second term apparently arising from the charge
itself.

The Dirac prescription despite its elegance was some-
what mystifying, however, in that it brought in the ad-
vanced solution that had been discarded as unphysical.
Dirac sought to relate its presence to another outstand-
ing problem of field theory, namely the problem of infinite
self-action. We will consider it next.

3. The paradox of self-action

motion of an electric charge a is given by the modified
equations:

ical solutions. In one we have causality but infinite
self-energy while in the other the motions are finite but
acausal. Not surprisingly, it was believed that the prob-
lem of self-force of the charge would not be solved except
by recourse to quantum theory.

This hope has not been fully realized. Quantum field
theory does alleviate the self-energy problem but can-
not surmount it without introducing the renormalization
program. We shall consider the quantum problem in Sec.
IV. For the present we will confine ourselves to the clas-
sical electrodynamics.

These comments therefore underscore the fact that
there are conceptual problems with the classical field the-
ory, and thus provide further motivation for looking at
the alternative offered by action at a distance.

Dirac (1938b) highlighted the problem with the help
of an idealized situation. Imagine an electric charge a at
rest and under the action of no forces until it is hit by a
hammer. The hit is thus an impulsive force which sets the
charge in motion. What happens to the charge thereafter
when it finds itself once again under no external forces?

There are two possible solutions for describing the mo-
tion of the charge. The first solution has the charge mov-

ing with a uniform velocity that it acquired as a result
of the hit. The second solution is more peculiar and
describes the charge moving with a momentum that in-
creases exponentially with time, and according to the full
relativistic treatment given by Dirac its velocity rapidly
approaches the speed of light. This happens because of
the self-action force introduced in Eq. (2.4).

Although the first solution appears reasonable, it is
the second that matches the prescribed initial conditions.
Under the circumstances Dirac reexamined the initial
conditions and argued that they need to be altered if
the first solution is to apply. The new situation has the
charge moving from rest at infinite past and attaining the
final velocity just before being hit; a velocity it maintains
thereafter.

The crucial mathematical point to appreciate here is
that, with the self-action included, the differential equa-
tion of motion is of third rather than second order. Thus,
after an impulsive force the acceleration rather than the
velocity changes discontinuously. Physically, however,
the new situation seems acausal, for the charge accel-
erates in anticipation of the hit in such a way that it
builds up the right velocity just before being hit by the
hammer.

This acausal behavior of the charge can be rationalized
by pointing out that the self-action force as computed
by Dirac's method does include the advanced field. In
practical terms the duration of acausality is of the order
e /m c which is not only very small but also is small by
the factor 1/137 compared to the Compton time scale as-
sociated with the charge (assuming that it is an electron
or a proton).

The above discussion (see also Hoyle and Narlikar,
1993 for details) offers us a choice between two unphys-

B. The Wheeler-Feynman approach

Fifty years ago, Wheeler and Feynman (1945) ad-
dressed the above issues in an attempt to revive
the action-at-a-distance formulation as derived by
Schwarzschild, Tetrode, and Fokker (see references in the
previous section). The central themes of their argument
were that an action-at-a-distance theory was necessarily
nonlocal and that the apparent acausality in its results
arose from inadequate attention being paid to the inter-
action of a typical charge a with all the other charges in
the universe, even if they happen to be located far away.

1. A simple illustrative example

(2.5)

To simplify the picture further, Wheeler and Feynman as-
suined the local region around the charge o, to be empty,
in the form of a spherical cavity centered at r = 0, and
extending as far as r = Band the universe beyond having
N charges per unit volume.

In vacuum the full retarded electric field of the charge
a at a point P located at a large distance r from it would
be given by

e
Es = u —sinoexp [iu(r —t)] (2 6)

To illustrate how the distant charges influence a local
experiment we will repeat briefly the simple derivation
given by Wheeler and Feynman in their above-mentioned
paper.

We assume the universe to be static, Euclidean, with
a uniform number density of charges e and with the line
element of special relativity as given in Eq. (1.3). Let
the charge a be located near the origin 0 of spherical
polar coordinates (r, 8, P) and suppose that its motion
there is Fourier analyzed with a typical component of
the acceleration given by

Rev. Mod. Phys. , Vol. 67, No. 1, January 1995
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in the direction of increasing 0 where 0 is the angle made
by the direction OP with that of the acceleration vector
u . We have taken c = 1.

This result, however, needs to be modiBed to include
the refraction eKect at the boundary r = B of the cavity
and the phase change due to the refractive index n —ik
of the medium beyond. The latter is related to the eKect
the basic Beld produces on the motion of a typical charge
at P. Thus, we modify (2.6) to

2eu sin 0
Es = . exp [i~(r —t+ (n —ik —l)(r —R) j],r(1+ n —ik)

(2.7)
and use the field Eg to compute the acceleration of the
charge at P. This is given in the direction of Eg by

universe. Multiplying this field by the charge gives us
the standard formula for the radiative damping force

2e
Re = a.

3
(2.13)

y (a)ret ~(a)adv
2

It can be verified that this is the nonrelativistic version
of the Dirac term in Eq. (2.2).

If instead of calculating the sum of responses at the
location of a we had calculated it at an arbitrary point
in its neighboring region, we would have found that the
field is Dirac's extra field (2.3),

e—p(~) &s (2 8)

where p(u) is a frequency-dependent function, deter-
mined in terms of the refractive index by the formula

e e
Es p(w) —s—in 0 exp ( icur)—

m 2r
(2.1O)

The net response of all such particles along the future
light cone of a is given by the integral

OO & 27K

p((u) si One
' "Es Nr

=R 8=0 y 0 2m'
xsin8 drd0dg

2 —2'W 4——zueu e
3

(2.11)

The responses normal to the acceleration vector cancel
out and so we may use Eq. (2.11) to sum over all fre-

quencies and arrive at the result

2e. ..R = —a.
3

(2.12)

This is the field that the charge a itself would experience
because of its action at a distance with the rest of the

4' Ne2
(n —ik) = 1 — p(cu).m+2

The crucial step in the Wheeler-Feynman theory was to
recognize that in the action-at-a-distance formulation the
motion of the particle at P will generate a reaction which
will arrive at a backwards in time, i.e. , at the instant that
the original retarded field left it. This reaction is the half
advanced Beld of the particle at P. Further, to study the
electrodynamics in the vicinity of a we must evaluate
such responses from all particles lying on the future light
cone of a.

The half advanced electric field at a due to the source
acceleration at P as given by Eq. (2.6) when resolved in
the direction of the acceleration of a then becomes

This calculation is slightly more involved and may be
found in the work of Wheeler and Feynman (1945). Using
this result, they built up a self-consistent picture of action
at a distance in the following way.

In the above calculation the net field emanating from
charge n is the full retarded field. How is it made up7 It
is made up of two components as given below:

p(a)ret p(a)ret + p(a)adv1

2

+ ~(a) ret ~(a)adv1

2
(2.15)

The first term on the right-hand side is the basic time-
symmetric Geld of charge a while the second term, as we
just saw, represents the response of the universe. The
calculation is thus self-consistent since it was the full re-
tarded Beld that was used in computing the response.

We therefore see that Dirac's mysterious prescription
receives a natural derivation in the action at a distance
framework. We also see that the radiative reaction is not
a self-force but is the combined reaction of the universe
to the motion of the charge a. Further, even though our
theory is time symmetric, we seem to have arrived at an
explanation of why retarded solutions operate in practice:
it is not an ad hoc choice required by causality but forced
on us by the way the universe responds.

It might be argued that the elegant result obtained
above may be due to our oversimpliGed choice of param-
eters describing the universe. The universe is not homo-
geneous. It may consist of charged particles of various
masses (e.g. , electrons and protons). The cavity imag-
ined around the charge a may not be spherical. Is the
result sensitive to these issues'

Wheeler and Feynman demonstrated that these issues
are not important. The crucial issue is that of complete
absorption. The integral in Eq. (2.11) must then con-
verge to the value it has in Eq. (2.11). This is ensured
by the presence of a sufhcient number of particles to the
future of a that can absorb the disturbance coming out
from a and react to it. The condition may be stated thus:
the universe must be a perfect absorber of all electromag
netic fields emanating from urithin. The self-consistency
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argument implied by Eq. (2.15) will not work if the uni-
verse is an imperfect absorber. We will now state this
requirement mathematically and use it to give a general
derivation of the above result.

p(b)ret p(b)adv 0
b

The field acting on charge a therefore becomes

(2.19)

2. The general result
y (b)ret + y (b)adv

bga

I et us consider the universe as static and with Eu-
clidean geometry. The electric charges in it are moving
arbitrarily and we will denote by E( )re and P( ) the
retarded and advanced Gelds of a typical charge a. We
remind the reader that the fields referred to here are di-
rect particle fields and hence do not have extra degrees
of freedom of their own. Thus the retarded and/or ad-
vanced field implied here is well defined with respect to
the light cones future and/or past of the corresponding
particle.

We now state the property of perfect absorption as im-
plied by Wheeler and Feynman (1945) as follows: When
any arbitrary electric charge a is accelerated, all elec-
tromagnetic fields arising from its motion directly or
through its interaction with other charges —should tend
to zero suKciently rapidly at great distances from a. If we
confine our attention to only such fields, then the above
condition means

E( )" + I" ( o~ —
~

as r -+ oo. (2.16)
.1 s,,t s d t'l1

In vacuum, a radiative field falls asymptotically as r
and the more rapid fall implied by Eq. (2.16) indicates
perfect absorption. The proof given by Wheeler and
Feynman that in a perfectly absorbing universe only re-
tarded interactions survive is as follows.

Since in (2.16) we have a combination of incoming and
outgoing waves, for the relation to hold at all times we
need the two types of waves to vanish asymptotically
separately. Thus Eq. (2.16) implies two relations:

) ~(»-t
2 (r)

(2.17)

) y (b)adv

r) asr Moo,

and hence also

) ~(b)ret F(»adv—"2 as r -+ oo. (2.18)

However, unlike Eq. (2.16) the above combination rep-
resents a sourceless field and hence a solution of the ho-
mogeneous wave equation. As such, its faster than r
behavior at infinity implies that it must vanish identically
everywhere. Hence

yl(»ret + y7(a)ret pl{a)adv (2 2())
2

bga

The first term on the right-hand side represents the re-
tarded field of all other charges b g a acting together on
a while the second term is the Dirac radiative reaction.

We therefore arrive at the general version of the result
derived in the simple example considered earlier, thus
highlighting the role of perfect absorption by the uni-
verse. For this reason, Wheeler and Feynman called this
theory the absorber theory of radiation.

3. Enter cosmology

The apparent resolution of the causality problem in ac-
tion at a distance was, however, not quite complete in its
logical framework as Wheeler and Feynman themselves
pointed out. We can see the problem in the following way.
In the above general argument interchange the words ad-
vanced and retarded to find that the chain of reasoning
still goes through with (2.20) replaced by

) g(b) ret g(b) adv

bga

~ g(b)adv + g(a)adv g(a)ret+2
bga

(2.21)

This means that the charge a is acted on by the advanced
fields of all other charges and a radiative reaction that is
the exact opposite of that given by Dirac.

There is nothing to prevent us from using Eq. (2.21)
instead of Eq. (2.20), but in practice it would be very
awkward. For example, in the simple example discussed
earlier, we had assumed that the absorber particle was
at rest before being hit by the retarded wave from the
source. This is reflected in the first term on the right-
hand side of Eq. (2.20) which is uncorrelated with the
motion of a. In Eq. (2.21), on the other hand, the first
term is highly correlated with the motion of a and hence if
we took those correlations into account we would recover
Eq. (2.20).

On the other hand, we could use Eq. (2.21) to describe
a new situation in which the universe admits only the
advanced solutions. The simple example of Sec. II.B.1
would then have a counterpart in which the acceleration
of a generates advanced, i.e., incoming waves which hit
the absorber particles before reaching the source charge.
A typical absorber particle must move in such a way that
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g~(ret) + ~~(adv) (2.22)

where A. and B are constants. Now, we have seen that
a full retarded solution gives the Dirac radiative reac-
tion in a perfectly absorbing universe. With an absorber
of efficiency f the field AF(" ) will therefore generate a
radiative reaction Af times the Dirac value. Similarly,
the field BI'"( ) will generate a reaction —Bp times the
Dirac value. For self-consistency therefore, the net radia-
tive reaction (Af —Bp) times the Dirac value added to
the basic elementary field of the charge a should give us
the net field assumed in Eq. (2.22):

after the incoming wave has hit it, it comes to rest.
Wheeler and Feynman argued that while a priori there

is nothing to prevent us from imagining a universe with
initial conditions set up in the above fashion, in the
thermodynamic context such artificial initial conditions
would appear highly unlikely. In fact, this distinc-
tion between Eqs. (2.20) and (2.21) was, according to
them, dictated by thermodynamic time asymmetry. The
time asymmetry in electromagnetic radiation arises from
asymmetrical initial conditions that favor Eq. (2.20) over
Eq. (2.21), i.e. , from the time asymmetry in thermody-
namics.

It turns out, however, that this recourse to thermo-
dynamics is unnecessary. The crucial consideration that
breaks the time symmetry of the action at a distance
theory comes from cosmology. This was erst pointed out
by Hogarth (1962) who argued that, if due note is taken
of the cosmological fact that the universe is expanding,
then the symmetry between the two situations leading
to Eqs. (2.20) and (2.21) is broken. For, if we examine
the proof of the general result of Wheeler and Feynman
given above, we notice that to prove the consistency of
retarded solutions we require perfect absorption in the
future, and likewise we need perfect absorption in the
past for the consistency of the advanced solutions.

The early observations of Hubble (1929) based on the
redshifts of the nearby galaxies and clusters have since
been extended to galaxies considerably farther away and
the picture of the expanding universe has come to be
generally accepted. Most cosmological models today are
based on this concept. Thus the assumption of a static
universe by Wheeler and Feynman was unrealistic. Hog-
arth's argument can be reworded in the following way to
underscore the crucial role of cosmology in action-at-a-
distance electrodynamics.

Suppose that we have a universe that has future and
past absorbers operating at different e%ciencies which we
shall denote by factors f and p. Thus f = 1 denotes a
perfect future absorber while p = 1 a perfect past ab-
sorber. Let such a universe lead to a net self-consistent
solution of the form

Equating the coeKcients of the advanced and retarded
fields in Eqs. (2.22) and (2.23) separately, we determine
the coeKcients A and B as

1 —f
2 —f —p

(2.24)

C. Cosmological considerations

1. Action at a distance in curved spacetime

As discussed above we will G.rst develop the general
framework for describing the action-at-a-distance elec-
trodynamics in Riemannian spacetime and then apply it
to some of the standard models of the universe. Such a
framework was first given by Hoyle and Narlikar (1964a)
in their attempts to follow up Hogarth's lead in a more
comprehensive manner.

Thus instead of the Minkowski line element of Eq. (1.3)
we have

d8 = g Idx Iz (2.25)

and the question arises, in what way can we generalize the
h(s~&&) type of interaction to the above spacetime. Al-

though the square of the interval 8&& between two world
points A, B along the geodesic joining them (assuming it
to exist and to be unique) is definable in a Riemannian
spacetime, any operations of calculus on it are extremely
intricate and do not lead us to Maxwell-like equations.
The correct procedure lies in the generalization of the
wave equation (1.5) to curved spacetime.

Synge (1960) had developed the necessary basic frame-
work which was subsequently used by Dewitt and Brehme
(1961) for defining the Green's functions of the wave

equation in a Riemannian spacetime. In formulating ac-
tion at a distance these Creen's functions play the basic
role of the above delta function. We will use the notation
of Hoyle and Narlikar (1963) in what follows.

Accordingly we will rewrite the Fokker action (1.6) in
curved spacetime in the following form:

Notice that if f = 1 we get the full retarded field as
the self-consistent answer so long as p g 1. Similarly, for

p = 1 and f g 1 we get the full advanced field as the self-
consistent answer. Only for the case p = f = 1 do we run
into an ambiguous situation. This last was precisely the
case encountered by Wheeler and Feynman. Hogarth on
the other hand showed that most familiar cosmological
models lead to unambiguous results.

Before we can examine the cosmological implications
in detail, however, we have to prepare the groundwork
for describing action at a distance in curved spacetime,
since cosmology uses that framework.

y (ret) + y (adv)1
2

(Af B ) P (ret) F(adv) (2 23)
2 (2.26)
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&A&B &B&A & (2.27)

Here the first term is a straightforward generalization
but the second one needs some explanation. The Green's
function Gi„;B takes the place of the flat spacetime term
h(sAB)g;k and has the following properties:

function vanishes in flat spacetime. We therefore see a
connection with the b(s2AB) term of the Fokker action.
Here we briefly run through the formalism just to illus-
trate how the action at a distance is describable anal-
ogously to the flat spacetime version. Thus the direct
particle potential and field are defined by

&xGix.-B + &;

= [
—g(K, B)] ~ g;; h4(X, B) (2..28)

A( ) = 4mt. b G, i db'B,

ix I x A:x;ix ix;A:x '

(2.30)

&A&B p&A&B ( AB) + 'V&A&B ( AB) (2.29)

where p; „;B and qi„iB are two-point functions and 0 is
the Heaviside function. The latter part of the Green's

Notice first that we have attached suKxes to the ten-
sor indices to indicate the spacetime point at which they
operate. This is necessary since the property of tensor
covariance is a local one in curved spacetime. Instead of
functions of one spacetime point common in field theory,
here we are forced to use quantities that are invariant or
covariant at two points where they are defined.

The relation (2.27) indicates the property of symmetry
between the two points A, B at which Gi„;B acts as a vec-
tor. It is this property that ensures time symmetry of the
action deffned above. The relation (2.28) is the identity
satisfied by the Green's function. The two-point vector
on the right-hand side is the so-called paralle/ propaga-
tor introduced by Synge (1960) to describe the parallel
propagation of a vector along the geodesic joining two
points.

For detailed properties of G;„;B see Dewitt and
Brehme (1961) and Hoyle and Narlikar (1963, 1964a).
For example, the Green's function has the following
structure

and, in view of Eq. (2.28) the following relations also
hold:

(2.31)

where the current vector is de6ned as a straightforward
curved space analog of Eq. (1.12). (Where there is
no ambiguity the suffix on a tensor index is dropped. )
The Lorentz force equation is likewise a generalization of
Eq. (1.13) which need not be explicitly stated.

The action so formulated answers'question (3) raised
in Sec. I.C, even in relation to the effect of direct particle
field on the spacetime geometry. For a variation of the
metric tensor alters the spacetime in which the Green's
function GiAiB is defined. As a result the Green's func-
tion also changes and hence the action. It can be shown
that this variation leads to an energy momentum tensor
defined in terms of direct particle fields that resembles
the energy momentum tensor of the Maxwell field theory
(Hoyle and Narlikar, 1964a).

Earlier Wheeler and Feynman (1949) had speculated
whether the action-at-a-distance theory would produce
such a gravitational effect. Prom purely flat spacetime
arguments they had arrived at two possible forms of the
energy tensor:

g(a)g(b)lm g g p(a)'ly(b)I + g(b)ily(a)k
Frenkel 4 2g / ~ / ~ lm l+ l

a a
(2.32)

'k ~ ~
A:

Tcanonical 4'

a

~(a)adv~(b) ret
lm

b

g(a)adv ilg(b)ret A:

l

lm + +(b)adv+(a)ret lm
lm

~(b)adv il~(a)«t A:

l (2.33)

The first one they called the FrenkeI tensor and the sec-
ond the canonical tensor. They had concluded

From the standp. oint of pure electrodynam
ics it is not possible to choose between the two
tensors The difj'erence . is of course signifi
cant for the general theory of relativity, where

energy has associated toith it a gravitational
mass. So far we have not attempted to dis
criminate between the two possibilities by may

of this higher standard

It was subsequently shown by Narlikar (1974) that it
is the canonical tensor that arises from the above varia-
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tional procedure.
We now leave these formal aspects of action at a dis-

tance in curved spacetime since we shall need them only

marginally. Our aim has been to demonstrate that with
the above kamework it is legitimate to talk of an ab-
sorber theory in the curved spacetime of an expanding
universe.

2. Cosmological models

For completeness it is now necessary to describe the
cosmological models in which in the following subsection
we discuss the absorber theory of radiation. Although
there are several cosmological approaches we will restrict
our attention to those normally described within the met-
ric theories of gravitation. Again, we will limit our dis-
cussion to those aspects that we shall need for this article.
The reader may refer to standard texts in cosmology for
details He.re we will use the notation of Narlikar (1993a).

To begin with, we will consider only those models that
require the universe to be homogeneous and isotropic on
a large enough scale. Such models are described by the
Robertson-Walker line element which in standard nota-
tion is

2 2 2
dr'

ds2 = dt2 —Q2(t) +r (do +sin Odg ) . (2.34)

Here (r, o, P) are the comoving coordinates of a typical
galaxy which ideally is presumed to be at rest in the
above expanding cosmological frame. The time coordi-
nate t is called the cosmic time and such a global time
coordinate can be defined because of the large scale sym-
metry (homogeneity and isotropy) assumed for the space-
like sections t = constant. These symmetry arguments

allow the spacelike sections to have three types of ge-
ometry, all with constant curvature. The parameter A:

denotes the type of curvature: thus for k = 0 we have
Bat Euclidean sections, for k = +1 we have closed sec-
tions while for k = —I we have open hyperbolic sections.
All these sections have an overall scale that varies with
epoch.

The scale factor itself is given by Q(t). Observations
extending over several billion years along the past light
cone indicate that the universe has been expanding, i.e.,
the function Q(t) has been increasing with time over that
timespan. Diferent cosmological models have, however,
specified diferent functional forms for the scale factor.
Thus in some cases the universe expands from a singular
(pointlike) beginning, the so-called big bang, and either
expands forever or contracts back to a pointlike singu-
larity (the big crunch). There are also models which are
nonsingular.

For our purpose we do not need the specific details of
gravity theories that lead to these models. As we shall see
in the next subsection, we need the geometrical quantities
Q(t) and k of the Robertson-Walker model and the way
the density of matter p(t) falls off at asymptotic past and
future. Table I gives these details for some well-known
models.

Despite di8'erences in their geometrical details these
models share certain common features which we now
highlight. First, the redshift. If the source of light be-
ing observed now, at epoch t, shows the wavelength of a
certain spectral line to be A, then the wavelength of that
line at the epoch t, of emission was A, where

1+z = —= Q(t ) (2.35)
A.

The parameter z is called the redshift. For z ) 0, the line
has shifted towards the red end of the spectrum. This is

TABLE I. Some important cosmological models.

Model Reference

Einstein —de Sitter 0

Closed Friedmann +1 A(l —cos @), A = constant
t = B(Q —sin@)

Einstein and de Sitter (1932)

Friedmann (1922, 1924)

Open Friedmann —1 B(cosh@ —1), B = constant
t = B(sinhg —vP)

Friedmann (1922, 1924)

Steady-state constant Bondi and Gold (1948),
Hoyle (1948)

Quasi-steady-state 0 (1 + a cos Pt) exp At
A, o, P constant

(1+n cos Pt) Hoyle, Burbidge, and
Narlikar (1993)

Brans-Dicke

Dirac

0 t, A = (2u) + 2)/(3u) + 4) Brans and Dicke (1961)

Dirac (1938a)
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invariably the case and so we conclude that observations
of all discrete extragalactic sources show that the length
scale of the universe has increased since the time light left
a typical source. Thus in an expanding universe, light
traveling towards the future (as in a retarded solution)
is redshifted, while that traveling towards the past (as in
an advanced solution) is blueshifted.

A second feature of expanding models different from
fIat spacetime is the epoch dependence of density. As
seen from Table I the density in general behaves as a
function of the epoch and thus the past absorber is phys-
ically different from the future absorber. Hence, unless
one carries out explicit computations one cannot decide
how one absorber will respond based on the knowledge
of how the other does.

Thus it is clear that when discussing the interaction
with the future absorber we are dealing with low energy
waves while in the case of the past absorber the inter-
acting waves are of high energy. Likewise, except in the
case of the steady-state and the quasi-steady-state mod-
els, and the closed Friedmann model, the future absorber
has low density and the past absorber high density of
absorbing matter. These issues will be relevant to our
discussion of the absorber theory in these models.

dsR ~ ——0 [dr —dp —p (d8 + sin Odg )] . (2.37)

= constant,

&O = 3&o

0&w&oo. (2.38)

We may identify t0, 70 as the time coordinates of the
present epoch.

Steady-state model: Here we will assume, without loss
of generality t = 0, v. = 0 to denote the present epoch.
We then have

Q(t) = H = constant,

O(r) = 1 —oo & ~ & H (2.39)

We will give below the explicit examples of the
Einstein —de Sitter model and the steady-state model.

Einstein —de Sitter model:

3. Conformal transformations

g.A:
= ~~ g'k (2.36)

where the conforrnal function A(x') is a twice differen-
tiable function with values in the range 0 & 0 & oo.

If we can And a conformal function and a set of coor-
dinates such that g;A, ——g;I, then the spacetime described
by the metric is said to be conformally fIat. It was shown

by Infeld and Schild (1945) that the Robertson-WValker

model is conformally Bat. The following series of trans-
formations are needed to explicitly demonstrate this re-
sult:

A fortunate circumstance simplifies the discussion of
the absorber theory in the above cosmological models.
This arises because (a) these cosmological models are
conformally flat and (b) the electrodynamic equations
are conformally invariant. More speci6cally, a conformal
transformation relates two metrics that are defined on
the same spacetime manifold. We write

In the latter case note that the time axis on the v scale
ends at w = H . This happens because there is an event
horizon to the future of any fundamental observer. This
fact will turn out to have very significant implications for
quantum electrodynamics.

D. Response of the expanding universe

With the inputs brought by cosmology it is now worth
taking a second look at the absorber theory of radiation.
There is, however, one subtle issue that Feynman [1963,
but also see Mr. X in The Nature of Time, edited by
T. Gold (Cornell, 1967)] had pointed out with regard
to Hogarth's treatment of the problem that needs to be
highlighted. For this, we go back to the general treatment
of Sec. II.B.2.

As we pointed out, the condition for perfect absorption
in the future demands [cf. Eq. (2.16)] that as r + oo

) — F " + F l ~ 0 faster than 1/r
2

k=0.

k=+1. T =

1 1
(T —B), r = —(t—an (+tan q),

2
' 2

1
p = —(tan ( —tan q).

2
Same as above with hyperbolic functions

replacing trigonometric ones.

In practice this is ensured by the absorptive part of the
refractive index n —i k, i.e., by the parameter k. Hogarth
had used the phenomenon of collisional damping to cal-
culate k. Further, when he discussed the condition of per-
fect absorption in the past, he had used the same formula
for k, but with its sign reversed. Feynman s criticism was
that this sign reversal brought in thermodynamics that
Hogarth was seeking to avoid, for the phenomenon of col-
lisional damping is a collective phenomenon that assumes
the second law of thermodynamics and asymmetrical ini-
tial conditions. Thus, the claim that cosmology and not
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thermodynamics determined. the unidirectionality of elec-
tromagnetic radiation was vitiated.

To get around Feynman's criticism, Hoyle and Narlikar
(1963) proceeded in a difFerent way: they used the radi-
ation reaction on the charge to determine the damping
parameter A:. Their approach involved first choosing a
particular combination of advanced and retarded solu-
tions as the final solution and then testing it for self-
consistency. Let us say that the pure retarded solution
is to be so tested. Then, given that all charges interact
finally through retarded waves, the radiation reaction is
as given by Dirac [cf. Eq. (2.20)]. This reaction gives a
force of damping that, in the nonrelativistic limit, leads
to the following equation of motion for a typical absorber
particle acted on by an external electric field E:

2emr' = eE+
3

(2.40)

Here e is the charge and m the mass of the particle.
If we Fourier analyze with u the angular frequency of

a typical field component, then it is easy to see that the
refractive index n —ik of the absorber medium is given
by the equation

In manifestly conformally Hat form this is

ds = —
~

[dr —dr —r (d0 + sin Odg )]. (2.44)ro)

Let us first test for the consistency of retarded solutions.
Suppose a general disturbance leaves the source at

r = G at t = tp, 7 = v, and travels along the future
light cone. We consider a typical Fourier component of
angular frequency u of the electric field emanating from
the accelerated source. At the source we have already
adjusted the conformal factor of Eq. (2.44) to be unity.
Thus the frequency u measured on the t scale is the same
as that on the w scale. Since the electric field is confor-
mally invariant it is convenient to work with the line
element of Eq. (2.44) as we can take over the flat space-
time solution intact in these coordinates. However, as we
found in the general treatment of Wheeler and Feynman,
we need not go into specific details of the electric field but
need only verify that it does indeed fall ofF faster than
1/r at large distances.

The fIat spacetime expression tells us that without the
interaction with the absorber, the field falls off as 1/r.
The absorber introduces a frequency-dependent factor

4miiie' 2ie*~

)n —ik =1— 1+
mes 3m ( = exp

~

+ kdr
~

= exp( —I), say, (2.45)
Notice that in deriving the above equation and using it
for calculating the imaginary part of the refractive index
we have not gone beyond electrodynamics; certainly not
to thermodynamics. Further, if we were testing the self-
consistency of the advanced solutions we would likewise
use Eq. (2.40) with the sign of the radiative reaction
term reversed. This would change Eq. (2.41) to

4mNe~ 2ie~~

)n —ik =1—
mv jm (2.42)

This reversal of sign has no relationship to thermody-
namics (as was the case with Hogarth's use of collisional
damping), but follows logically from electrodynamics.
Further, the presence of the imaginary part in the re-
&active index arising from the radiative reaction term
tells us that we are not dealing with a pure scattering
phenomenon.

The next step in the argument is from cosmology. Be-
cause a typical wave from the source undergoes a spectral
shift while traveling into the past or the future, we have
to take into account its changed frequency at the time of
its interaction with the absorber particle.

To study this eKect we will consider two explicit exam-
ples from Table I. First consider the Einstein —de Sitter
model whose geometrical details were given in Eq. (2.38).
We rewrite its line element in the Robertson-Walker form
as

4/s
d = dt —

(

—
[

[dr + r (do + sin Od(j')]. (2.43)
t~

r
(d(r) = M 1 +—

7+
(2.46)

A comparison with the Eq. (2.35) will tell us that the
above is a restatement of the phenomenon of cosmolog-
ical redshift. The absorber particle encounters a lower
frequency than what was sent out by the source. The de-
termination of k from the formula (2.41) requires us also
to know the asymptotic behavior of the number density
¹ A reference to Table II tells us that, since the density

of further damping. [Here w{r) is the frequency of the
wave at the radial coordinate r ]It is th. e asymptotic
behavior of this factor that decides whether the future
absorber is perfect or not. If the integral in the expo-
nent of Eq. (2.45) diverges, the absorption is complete;
otherwise it is incomplete.

Our task therefore is reduced to computing the asymp-
totic form of the parameter A: in the refractive index. To
calculate this first note that although in the Bat space-
time solution the frequency of the field does not change,
the v scale does not measure the proper frequency in
the cosmological rest frame. Thus ~ is not the proper
frequency with which the typical absorber particle at co-
ordinate r interacts. The proper frequency is measured
on the t scale and the value of the conformal factor at
the absorber particle will determine it in terms of the
constant frequency on the v scale. The proper frequency
is therefore given by
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TABLE II. Consistency of advanced and/or retarded solutions.

Model Future absorber Past absorber Outcome

Einstein —de Sitter

Closed Friedmann

Open Friedmann

imperfect

perfect

imperfect

perfect

perfect

perfect

advanced

ambiguous

advanced

Steady-state

Quasi-steady-state

perfect

perfect

imperfect

imperfect

retarded

retarded

Brans-Dicke

Dirac

imperfect

imperfect

perfect

perfect

advanced

advanced

p is proportional to N,

N(r) = K(0) 1+—
+O

- —6

(2.47)

Using these formulas in Eq. (2.41) we find that the
asymptotic value of k is given by

o, = constant (2.48)

and the integral for absorption as given in Eq. (2.45) is

OO f r tI ex~ dr
i
1+ —

i

dr&oo.r )
(2.49)

(2.50)

Note that this integral converges, thus indicating that
the absorption is imperfect It fol. locus therefore that in
the Einstein —de Sitter cosmology, the retarded solution is
not consistent.

What about the advanced solution? We similarly con-
sider the above formulas in the asymptotic limit of very
large blueshifts. The situation at high energies is, how-

ever, not so clearcut. If we assume that interaction cross
sections saturate as u -+ oo, then it can be shown [cf.
Hoyle and Narlikar, 1963] that as ~ ~ oo,

We therefore have a cosmology that does distinguish
between the past and the future absorbers, the main
point made by Hogarth. The final outcome, however, is
the opposite of what is found in real life. Let us now ex-
amine another case from Table I, the steady-state model.

Using Eq. (2.39) it is easy to see that a retarded
wave emitted at t = 0 by a source at r = 0 arrives at
the absorber particle at the coordinate r at w = r and
therefore the frequency cu at the source is redshifted to
w(r) = w(1 —Hr). The number density of absorber par-
ticles per unit proper volume, however, remains constant
at N = No, say. Again, evaluating the parameter k in the
low frequency limit we finally get the absorption integral
of Eq. (2.45) as

1 —Hr (2.52)

This integral clearly diverges, thus ensuring perfect ab-
sorption in the future.

For the past absorber, a similar calculation gives the
blueshifted frequency of the advanced wave at the ab-
sorber particle with coordinate r to be cu(r) = w(l+ Hr).
Thus again we are dealing with high frequency waves
at the asymptotic past infinity. However, the number
density is still constant and hence from Eq. (2.50) the
limiting value of the constant —k is oc cu(r) . So the
absorption integral of Eq. (2.45) becomes

(1+Hr) 'dr & oo. (2.53)
Using the N cx u dependence and keeping in mind the
fact that w is bounded below at w = 0, the integral for
absorption in the past becomes

GPI oc = +OO)
0 7o P

(2.51)

i.e. , it diverges. Thus here we have the past absorber
perfect and the future absorber imperfect, a situation
leading to the advanced. solutions being self-consistent.

This integral converges, indicating imperfect absorption.
This is another example of the past and future ab-

sorbers behaving differently. In this case, however, we do
get the right answer, viz. that only the retarded solution
is self-consistent.

The calculations with regard to the response of the past
absorber as given above carry a caveat. The determina-
tion of the refractive index for very high energy waves
cannot really be carried out entirely classically. Quan-
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turn efI'ects cannot be ignored. Nevertheless, as stated
earlier, if the quantum cross sections converge at high
energy (as they must do) the conclusions drawn here will
stand.

With regard to the models mentioned in Table I we
find a variety of answers to the above type of calculation.
The results are summarized in Table II. For the cosmolog-
ical models with the curvature parameter = 1 or —1 the
calculation is more involved and was carried out by Roe
(1969). Davies (1972b) has also examined a whole class
of cosmological models with somewhat difI'erent refrac-
tive indices. His conclusions in general are similar to that
of Table II. He has, however, questioned if the trapping
of redshifted waves of frequencies below the plasma fre-
quency in the future absorber of the steady-state universe
can be interpreted as absorption. The point, however, is
that whatever the physical process it will eventually en-
sure absorption of all waves of progressively decreasing
frequencies as they travel through a future absorber of
constant density and infinite extent. Thus the condition
(2.16) is satisfied.

Davies (1973) has also pointed out that absorption will
take place by macroscopic objects at all wavelengths; i.e. ,
a galaxy will absorb photons at a rate proportional to
the photon density (oc B s) and hence if R increases
slower than t ~ as in the Dirac model the time-integrated
photon absorption diverges, giving perfect absorption. In
the Dirac model with G oc 1/t the black hole radius tends
to zero and so if all matter in galaxies, etc. , ultimately
ends in black holes the universe would not be opaque.
In this sense the Dirac model in Table II is a borderline
case.

In some cases in Table II the models give both the
advanced and retarded solutions as self-consistent. We
call such a case ambiguous since there the cosmological
time asymmetry is not able to resolve the issue and we

are not better ofI' than Wheeler and Feynman working
within the static universe.

Can we use collisional damping to settle t;hese issues as
Hogarth had attempted to do? In a self-consistent pic-
ture the following must hold. If retarded solutions are to
be justified, the future absorber must be perfect and the
past absorber imperfect. Now a particular cosmological
model may have a perfect future absorber using colli-
sional damping; but how do we judge the efIicacy of the
past absorber? Being of thermodynamic origin the na-
ture of the phenomenon along the past light cone cannot
be determined unambiguously. Thus we cannot settle the
issue without an extra assumption about the thermody-
namic arrow of time. Hence, if we wish to work entirely
within the framework of electrodynamics and cosmology
we have to avoid the usage of collisional damping as the
means of absorption. Once the consistency of retarded
solutions is established, however, we can use the above
process to compute any actual damping.

Where there is the correct (i.e. , retarded) solution
emerging clearly we are not only better ofI' vis a vis
Wheeler and Feynman, but we are also better ofI' com-
pared to the classical field theory, because in such mod-

els we are able to link the local electrodynamic time
asymmetry to the cosmological one and are thus able to
demonstrate that the choice of retarded solutions is not
ad hoc but forced by the universe. The analysis given
here therefore answers the first of the questions raised
at the end of Sec. I.C. This gain is very important in
rehabilitating action at a distance as a viable classical
theory.

From Table II it is clear that cosmologies with ongo-
ing creation of matter deliver the right answer, because
in their cases the future absorber has sufhcient absorb-
ing matter to be perfect while the past absorber is rar-
efied enough (for high frequency waves) to be imperfect.
Thus, if a workable action-at-a-distance theory is to be
the decisive criterion, these theories have to be preferred
to those others (like the big-bang models of Friedmann)
which give wrong or ambiguous answers. Considering,
however, that this verdict on cosmology is the exact op-
posite to the current beliefs in the validity of big-bang
models more has to be said in justification of action at a
distance as the correct approach to electrodynamics.

In this context, the most important issues are raised in
questions 4 and 5 at the end of Sec. I.C. Can the action-
at-a-distance formulation be developed at the quantum
level and does it throw more light on issues which trouble
the field theory, e.g. , the problem of self-action? We will

review the progress on these fronts next.

III. QUANTUM ELECTRODYNAMlCS-
NONRELATIVISTIC PROCESS

A. The path-integral approach te quantum mechanics

1. Introduction

We have so far proceeded along classical lines. We
have shown that the direct-particle approach to electro-
magnetism works at least as well as the Maxwell Geld
approach in explaining all the classical phenomena of the
interaction of charges, and that it links with cosmology
in an interesting way. The choice of retarded potentials
is not an ad hoc choice, but is dictated by the universe
at large. Moreover, the unbounded motions of charges
moving under the self-force do not arise in this theory.

Although success in the classical domain is necessary
for any physical theory, it; is not suKcient. Nature, as
we understand it today, is quantum in character. In
electrodynamics, quantum theory has unearthed a vast
collection of phenomena outside the concepts of classi-
cal physics. These have been explained with remark-
able success by the quantized version of Maxwell's theory,
although there have been conceptual and mathematical
stumbling blocks, too. Can the direct-particle theory do
as well here, if not better'?

At first sight, an attempt to extend the classical direct-
particle theory to include quantum phenomena seems un-
likely to succeed. In Maxwell's theory we have Gelds to
quantize. The degrees of freedom of these fields result in
packets of energy called "photons, " which play such an
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important part in quantum electrodynamics. We have
no analogous degrees of freedom in direct-particle fields.
Thus photons do not appear to exist in the latter the-
ory. The only degrees of freedom are those vested in the
particles. Can we get all the conventional quantum elec-
trodynamics by a first quantization alone? If not, the
theory fails. If we can, however, the theory must be re-
garded as the superior theory, because it reproduces all
observations under fewer degrees of &eedom.

Other diKculties can be anticipated concerning parti-
cles and antiparticles. In classical theory all worldlines
are endless and timelike. In relativistic quantum electro-
dynamics, the worldlines can go forward and backward
in time. What happens to the "identity" of a worldline
under these circumstances? How does the rule of no self-
interaction operate under such conditions?

These are some of the problems which arise when we
undertake to quantize the Fokker theory. We shall pro-
ceed by stages in solving them, beginning with the sim-
pler nonrelativistic picture and ending with fully rela-
tivistic interactions of electrons and positrons.

2. Path amplitudes

Suppose a physical system has action S. This is de-
fined in terms of "paths" I' that the system can follow in
coordinate space. Classical physics tells us that not all I'
are permissible. In general, there is a unique path I' from
a given point Pi in coordinate space to a given point P2.
Writing Fo for this path, 1 o is given by the principle of
stationary action

bS = 0 for I' = I'0.

K(P2, Pq) = ) (constant) exp (iS/h),

=0, t2 & t&. (3.3)

In (3.3) the action S is computed for each path I, and
the sum is over all I' Rom Pq to P2. The constant is a
normalization constant. If, as is usual, the paths form a
continuum, the sum is replaced by an integral

t2 ( t&.

where the path Fg, g, from Pi to P2 is made up of the
segment Fpg, from Pi to P and the segment 1 g, g from
P to P2. Hence

exp [iS(1'~,~, )/&] = exp [iS(1'~,~)&]exp [iS(l'QQ )/&]

(3.6)

The integral is over the continuum of paths and is more
complicated than the Riemann or the Lebesgue integral,
which are summed over sets of points. Only limited
progress has been made toward giving a rigorous math-
ematical foundation to this concept. Feynman was able,
however, to obtain all required physical answers by vari-
ous subtle devices. We shall draw heavily on these tech-
niques. For details see Feynman and Hibbs (1965). The
constant in (3.3) can be absorbed in the measure of 'DI .

Suppose Pq represents the spacetime point (xq, tq) and
P2 the point (x2, tq) in the motion of a particle. let
t2 ) ti. Any path I' &om Pq to Pq will pass through
some intermediate point P having time coordinate t. Let
the spatial position of P be x. Since the action functional
is additive over paths, we can write

(3.5)

Earlier, we have used this mysterious prescription, and
have noted its remarkable success in classical physics. In
the thirties Dirac (1935) suggested the interesting idea,
later developed quantitatively by Feynman, that (3.1) is
the consequence of a more general principle operating
in quantum mechanics. In quantum theory the system
permits any of the paths I' from Pq to P2, but each path
has a definite probability amplitude proportional to

The sum over all paths from P~ to P2 can be obtained by
summing all paths 1 ~~, and F~,~ and integrating over
the spatial coordinates of P. From (3.6) together with an
appropriate measure for the path integral (3.4), we get

II(22 52' 21 51) f II (22 5 ' 2, 5)II2(2, t; xi 51)!Pz.

(3.7)

exp (iS/h), (3.2)

where h is Planck's constant. A11 amplitudes add, giving
a total amplitude for the system that goes from Pi to
P2 In the class.ical limit h ~ 0, and (3.2) oscillates
wildly as we move from path to path —with the exception
of I'0 where (3.1) holds. Paths in the neighborhood of
I'0 make a significant contribution in this limit, whereas
the contributions from other paths average out to zero.
Hence the classical principle of stationary action.

Feynman carried these ideas further by introducing
the concept of the path integral. He defined the nonrel-
ativistic quantum-mechanical propagator K(P2, Pq) for
the system to go from Pi to P2 by

lim
g+QQ & I 4 ~

T=l
A„K(Q„;Q g), (3.8)

where A„ is a constant of proportionality with the dimen-
sions of spatial volume. Summing over all paths gives

Together, (3.4) and (3.7) suggest an alternative way of
defining the path amplitude. Suppose we divide F~,~,
into a large number of small segments with intermediate
points Q, (r = 1, . . . , N —1). We can define Qo ——Pq
and Q~ = Pq. Over each segment (Q„q, Q„) we may
imagine S to change very slowly. We define the amplitude
for such a segment to be proportional to K(Q; Q ) ).
The amplitude along the entire path is then given by the
product
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A„K(Q; Q i)DI' = K(P2;Qiv i)K(Qiv —i; Qiv —2) .K(Q2 Qi)K(Qi Pi)d'Qiv —i

= K(P2, Pi) (3.9)

by (3.7), the integrations of d Q„being over the time
sections t = t„;r = 1, . . . , % —1.

The constants A„are again absorbed in the Ineasure
of I'. Because of (3.7), the definition (3.8) leads to the
same function K(P2, Pi) as before.

Sometimes we know K but not S. Then (3.8) is useful
to define a path amplitude. The original definition (3.2)
is the more direct one, however. We shall use (3.8) in
relativistic path-integral theory.

l

—mx —V ldt
) (3.12)

If vre substitute this in (3.4) and use (3.10), vre find that
@ satisfies the differential equation

Does it satisfy the Schrodinger equation'? The answer is
"yes," and we illustrate this by a simple example. For a
particle Inoving in a potential field V, we have

3. The wave function
V'2/+ V~t =ih

2 Bt
(3.13)

Suppose that, instead of knowing that the particle is at
(xi, ti), we only know the probability amplitude g(xi, ti)
for it to be at various spatial positions xi on the time
section t = tq. We then ask, what is the probability am-
plitude g(x2, t2) of finding the particle at (x2, t2)'? This
is obtained from the vreighted mean of K(x2, t2, xi, ti),

This is the one-dimensional Schrodinger equation. The
same argument can readily be extended to obtain the
three-dimensional Schrodinger equation.

In vievr of (3.11) and the fact that K = 0 for t2 ( ti
(no propagation backward in time) (3.13) implies that K
satisfies the equation

g(x2, t2) = K(x2, t2, xi, ti)g(x„t, )d x, .

As t2 -+ ti, @(t2) i Q(ti). T»»mp»es

(3.io) [(0/Bt2) —(ih/2m) V'2 + (i/h) V]K(x2, t2, xi, ti)
= 8, (x, —x, )h(t, —t, ). (3.14)

4. Transition probability

lim K(x2, t2, xi, ti) = 83(x2 xi).
t2mt1

(3.11)

The function g is the usual Schrodinger vrave function.

I et the particle be in an initial state P, (x, ti). We wish
to determine the probability that it is in state Pf (x, t2)
for t2 & ti. Using (3.10), the amplitude is given by

P~( 2, xt2)K( 2, xt„xti)P;( xt i)d ix2d xi

Pf(x2, t2) exp [iS(I'2i)/h]P, (xi, ti)17I2id x2d x„ (3.i5)

where the asterisk denotes complex conjugate.
The transition probability from P; to Pt is given by the square of the modulus of (3.15), i.e., by

@f(x2, t2) exp [iS(I'2i)/h]P, (xi, ti)P,*. (xi, ti) exp [
—iS(I'zi/h)]cg'&f (x2, t2)

x DI g] VI 2~cL xj d x2d x~d x2. (3.16)

We shall often refer to I"2~ as a conjugate path, irnply-
ing that the action along I'2~ is multiplied by —i instead
of +i.
5. Perturbation theory

know the behavior of a system with action So. I et the
system be disturbed by a potential V(x, t) over the time
interval (ti, t2). The action during this interval is there-
fore

We now consider the problem of perturbation expan-
sion from the path-integral point of view. Suppose we

V(x, t) dt. (3.i7)
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We now wish to determine Kv(X2, t2, xi, ti) in terms of
the unperturbed propagator KO(x2, t2, zi, ti). We have KV(X2 t2 zi tl)

iSO(l 2i)
exp

Vdt X I 2i. (3.19)

KO(x2, t2, xi, ti) = 'S.(1»)
exp (3.18) Expanding the exponential involving the integral over

V, then

Kv(x„t2; x„t, ) = exp
iSO (I'21)

1 (./~)
2

Vdt
I

+ . 'DI'». (3.20)

The path integral for the unity term in this expansion
gives Ko. We consider the next term

~ E2

KO (x2, t2, z, t) V(x, t) KO (x, t; x„t, )d xdt.

iSO (I'21)
(3.21)

(3.23)

The integral fr Vdt is over a specific path I'21, given by21
a function x(t). Suppose we take a particular instant t of
time and take all paths which pass through x(t) on their
way from Pq to P2. If we sum over these paths alone, we
will get, as in the analysis leading to (3.7), the product

Ko (x2, t2; x, t) Ko (x, t; xi, ti).

If the integral over V were absent, we would simply have
obtained (3.7). But now we have to weight (3.22) with

iV(x, t)/h. —Then we have to sum over all x, to include
all paths from 1 to 2. Finally we perform the time integral
to get the entire contribution:

The physical meaning of this operation is illustrated in
Fig. 2. If we consider a given t and x, we imagine the sys-
tem to proceed undisturbed from (xi, ti) to (x, t). Then
it is scattered by V(x, t), after which it proceeds undis-
turbed from (x, t) to (x2, t2). This scattering could occur
anywhere within the spacetime slab tq & t & tq. Hence
the integration in (3.23). The four-dimensional volume
element, d xdt = d7, say, can actually be taken over the
whole of spacetime, since none of the Ao functions in-
volves propagation backward in time. The integrand is
therefore zero whenever the point x, t, falls outside the
slab ti & t & t2.

Higher-order terms in the expansion give multiple scat-
tering processes. Thus (3.19) is the closed form of the
usual infinite perturbation series:

2
KV(X2t t2i X1I tl) KO(X2t t2i X1t tl) KO(X2) t2i xi t) V(x) t)KO(zt tI xi I tl)dr

Ko(x2) t2 j x3 I t3)U(x3) 't3)K0(x3) 53I x4 it4) V(x4 I t4)K0(x4, t4j xl 'I tl)d73dT4 +

(3.24)

6. Transition element (x&,&t 2)

Classically we are use to continuous changes of dynam-
ical variables. In quantum mechanics, transitions are in
general discontinuous. Can we give meaning to "veloc-
ity" or "acceleration" in discontinuous transitions? In
the path-integral formulation, we can indeed give a mean-
ing to such terms, by means of the concept of transition
elements. Suppose P; and Py are the initial and final
states of a system described by action S. We have al-
ready seen that the probability amplitude can be defined
by the path integral

/~exp (iS/h)$;VI'dsx, dsx2. (3.25)

V(x, t)

(x, , t, )

FIG. 2. The potential V(x, t) scatters the system from (xi, ti)
towards (x2, t2). The scattering can be along any set of paths
freighted by their respective probability amplitude. This rep-
resents the erst-order perturbation.
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Suppose we now have a functional E[I'] of a path I'. Then
the transition element of I' is given by

(&xl&14') = iS(I')
P& exp

(61&l&*) =

As seen in this example, a transition element need not
be real even if the original dynamical variable is real.

xi[I ]y,VI d'*,d'~,

This definition means that (PylF1$;) is a certain kind
of average of K[I'] over all paths suitably weighted by
the initial and final wave functions. Classically, we could
have calculated F[I'] exactly, since we know that I' = I'o

is the unique solution. In quantum mechanics, we cannot
make such a definitive statement.

Equation (3.26) is easy to apply to simple cases. For
instance, for a free particle of mass m, the transition
element of velocity is given by

7. Influence functional

We come now to the concept most useful for the quan-
tum development of direct-particle theories. Suppose we

have one quantum-mechanical system in interaction with
another, and suppose we are interested only in the de-
tailed behavior of the Grst system regardless of what hap-
pens to the second. We may speak of the second system
as the "external environment" of the Grst. To fix ideas,
let the erst system be described by a coordinate q and the
second by Q. The combined action for the two systems
is taken to be of the form

S = S,[q(t)]+ S~[q(t)]+ S,[q(t), @(t)], (3.28)

where So represents the action of the first system alone,
S~ is the action of the second system alone, and SI rep-
resents the interaction of the two systems. I.et P;(q;, t;)
be the initial state and Py(qt, tt) the final state of the
first system. Using (3.16), the probability of transition

P; m Pt is given by

P(P,

mph'')

= 4't(qf tf)4'*(q' t*)~'(q' t')~f(qy tt')

&«xp
1

—(So[q(t)l —So[q'(t)]) I P[q q']&q&q'"qy "q'g "q'"q*' (3.29)

where

(3.30)

Here @; is the initial state of the second system. We
have summed over all final states gt, since we are not
interested in how the environment ends up.

E[q(t), q'(t)] is called the in/uence functional and rep-
resents the "force" exerted by the environment on the
first system.

Feynman and Hibbs (1965) discuss inHuence function-
als and their applications in some detail; so we shall not
discuss them further. We expect the universe to act as
the external environment in the quantum version of the
Wheeler-Feynman theory. It is our aim to determine the
quantum analog of the response of the universe that ear-
lier we calculated classically. This response will appear
in the form of an influence functional.

B. Absorption and stimulated emission

While a first quantization of particles suKces to deter-
mine transition probabilities with respect to a prescribed
potential function, as in A.4 and A.5, transitions in a
radiation Geld are usually considered to require a quan-
tization of the Geld itself—i.e. , a resolution into photons
rather than classical wave theory. Then to match the

xP' (a', )d atd a~d a;d a,', (3.31)

where P, P are the wave functions for the states, and
J is the double path integral

S[a(t)1
—S[a'(t)]k V'a(t) V'a'(t)

(3.32)

Here the path a(t) "begins" at r = a, , t = 0 and "ends"
at r = at, t = T, while the path a'(t) begins at r = a', ,

t = 0 and ends at r = a&, t = T. The action S[a(t)] is a

quantization of the Geld it is usual to adopt a second
quantization of the particles. However, we shall show
here that none of this is necessary, all the standard radi-
ation results being obtainable without any more quanti-
zation than that given in Sec. A being needed.

In a simplified notation the probability P(m ~ n)
given by (3.16) of transition in the time interval 0 (
t & T from the state m to an orthogonal state n in a
specified (unquantized) external field is given by

p(m m n) = f f f 4 (ag)4 (a))JQ (a;)'„„
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functional of the path a(t) and is defined by

T
S[a(t)] = L(a, t)dt,

0
(3.33)

with the first-order term in the complex conjugate of
(3.36). After a reduction that is straightforward, except
perhaps for the calculation of the transition element of
the velocity (Feynman and Hibbs, 1965, p. 184) one ob-
tains

and similarly for S[a'(t)].
We are concerned with an electronic transition and

with a situation in which

L = —ma + eV(a, t) —ea A(a, t),=1 2

2
(3.34)

where e, m are the electronic charge and mass, the veloc-
ity of light is taken as unity, the nonrelativistic kinetic
energy is used, and V(a, t), A(a, t) are the potentials of
the specific 6eld. In a simple one-electron atomic prob-
lem the external field is made up of the electrostatic field
within the atom together with the field incident on the
atom. Provided the latter has no electrostatic component
it yields the vector potential A, which in the Coulomb
gauge satisfies

e (E„—E ) i(E„—E )t
52q 5 ) o

2

x „*aa-A ad adt (3.38)

A(a, t) = /4m') (c), exp [i(k. a —kt)]

+ck exp [—i(k. a —kt)]), (3.39)

To express this result in a more familiar form expand
the incident 6eld in a Fourier series. For this step con-
sider the atom as situated inside a cube with side of unit
length, the latter chosen to be very large compared with
any wavelength of importance in the transition problem.
Write

divA = G. (3.35)

T
S)a)t)) = So)a)t)) —ej a Aett (3.36)

so that So[a(t)] is the action for the atomic field alone.
Next we regard A as small enough for

~ Tie ie
exp —— a Adt = 1 —— a.Adt+ . (3.37)

p p

The external field A is then wholly transverse. With this
division of V and A, we write

noting that k = 2'(ni, n2, ns) where ni, n2, ns are inte-
gers, and that k ci, ——G because of the Coulomb gauge.
Inserting (3.39) in (3.38) leads to a double sum, Pk P&,
say. Waves with k g k' are regarded as coming from
different oscillators and so may be regarded as being in
random phase with respect to each other. After averag-
ing gi, Pi, , thus reduces to Pi, Moreover, T is very
large; even for allowed transitions there are a very large
number of atomic oscillations in time T so that

T
exp —(E„—E 6 hk)t dt

0

= 27rThi k + "
~. (3.40)

to be rapidly convergent. The dominant term in (3.31)
then involves the product of the first-order term in (3.36)

When E & E the important terms involve the minus
sign in the delta function, and (3.38) leads to

2 2 T 2

(4vre /h)2
~

"
~ ) ci, P„*(a)ae'"' P~(a)d a exp —(E„—E~ —hk)t dt

h j „" o
(3.41)

where we have deferred using (3.40) until after the sum has been converted to an integral. This is the case of
absorption.

When E & E we have the case of stimulated emission, and the corresponding result is

2 2 T 2

(4sre /5 ) ~ ~ ) ck p*(a)ae ' '

p (a)d a exp (E —E + h—k)t dt
)„o (3.42)

It is not hard to see that (3.42) is the same as (3.41).
Although c*e ' has replaced cI,e' the roles of the
states m, n have been switched; P is the state of lower
energy in (3.41) whereas P is the wave function of the

lower state in (3.42). This confirms that the transition
probability for stimulated emission in an e~ternal Beld is
equal to that for absorption.

It is usual to express the transition probability in terms
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of the intensity of the applied field. In order to do this
it is necessary either to approximate (3.41) or to average
the transition probability with respect to the orientation
of the atom. We adopt the latter procedure. We define

Ck = Ck Rk 0'k(~) (~) (3.44)

and let n&~ i, o.&l be unit vectors which together with k/k
form an orthogonal triad. Because of ck k = 0,

a „(k) = P„*(a)ae*" P (a)dsa, (3.43)

Ici, a „(k)l = Q (ci, n~'~) P„*(a)n~'l . ae*"' P (a)d a (3.45)

We have to average (3.45) with respect to orientation.
It is not hard to show that the sum of

P„'(a)n„.ae*" P (a)d a. p„(a)nkvd
l ae '"' p* (a)d a (3.46)

and its complex conjugate averages to zero, and that (3.45) is proportional to Ici, l
and can be written in the form

—Ici, l la „(k)l, where la (k)l depends on the magnitude but not the direction of k, and is equal to la
I

when
the factor exp(ik a) in (3.45) is approximated by unity. Hence the average value of (3.41) is

exp —(E —E + hk)t dt (3.47)

There are d k/(2n)s terms of this series in the element
dsk of k space. Defining Ici, I2 by

equating (3.51) to

k 3
= C

d3k

we now write (3.47) in the integral form

(3.48)

dn. — I(k)dA:.
k
k

For this definition to hold irrespective of lckl2 we must
have

I(k) = A: Ici, I2.

exp —(E„—E —hk)t dt . d k. (3.49) Eliminating Ici, I2 between (3.49) and (3.52), and using
(3.40), one easily obtains

—ExH=2) Icil kk
4m

lci, l2kkd k (3.50)

and that the contribution of solid angle dO to (3.50) is

To define the intensity I(k) per unit sohd angle we
note first that dB I(k)~ia (k)~Pd~i k — "

)dk

(3.53)

for the transition per unit time. The result (3.53) applies
both to absorption and stimulated emission, and. is the
usual relation between the intensity and the transition
probability. We can introduce separate intensities I~~i (k)
for the "polarization" directions o.k by defining

lci, l2k dA:, (3.51) Il'&(k) = lci, . o. ' I2.
k4 (,-)

where k lies in dO. The intensity I(k) is now defined by Evidently
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I(k) = ) IUi (k).
j=l 2

(3.55)

We end the present section by introducing the concept
of opacity. Suppose there are n(k)dk atoms per unit vol-
ume in state m, where E & E and (E —E )/5 lies
between k and k+ dk. Define a mean value of Ia „(k)I2

by

&la-(k)I' n(k)dk = ).Ia-(k)l' (3.56)

Pg 4' e Pg

Ia „(k)l n(k)ds. (3.58)

Radiation traveling from Pq and P2 is reduced in inten-

sity by the factor exp[—j&' d7], it being supposed that
enough atoms are involved for the absorption probabil-
ity to be averaged. It may be noted that the factor
hk appears on the right-hand side of (3.57) because of
E —E = hk, not because of Geld quantization.

the summation being taken through the small volume V
for all atoms with (E —E )/h between k and k + dk.
Both Ia (k) I2 and n(k) can be functions of position as
well as of k.

Suppose radiation of frequency k travels along a three-
dimensional spatial path I' connecting two points P~ and
P2. Then the opacity difference between these points
is Jr dr, where d7 is the difference for an element of the
path. To obtain &, let 8 be the three-dimensional length
along I' and let u(s) be the unit tangent vector at s. The
opacity differential dw(k)/ds for frequency k is defined in
terms of absorption by the equation

I(ku)dAdk = dOI(ku) la „(k)I2hkn(k)dk,
d7. (k) 4vr e

ds 362

(3.57)

and the opacity difference is

generate spontaneous emission from the excited states
of atoms, here we have no such resource. How then is
spontaneous emission to be understood and calculated' ?

To Bx ideas, let us consider the motion of particle a in
the time-interval 0 & t & T (see Fig. 3), and denote the
displacement of a by a(t). I et b be a typical absorber
particle whose world line is intersected in intervals A
and A+, respectively, by the past and future light cones
from the initial point [a(0), 0] and the final point [a(T), T]
on the path a(t) of a. From what has been said above,
the induced transitions of a arise from its interaction with
the retarded Beld of 6, i.e. , from the portion A of the
worldline of 6. The action governing induced transitions
is therefore

—e A„I l (a) adt,
0

(3.59)

where A„~ is the full retarded 3 potential from b. To
calculate spontaneous transitions, we need, on the other
hand, the transitions of b induced by the full retarded
Beld of a. The action governing this is

(3.60)

F[ (t) a'(t)] = F'"I (t) '(t)]
e

bga
(3.6i)

with a similar notation. As in the classical case, we are
looking for a self-consistent cycle of argument in which
the net Beld is the retarded one. Throughout this calcu-
lation, we shall work in a conformally Hat cosmological
model with a perfect future absorber.

Our aim is to calculate the in8uence functional govern-
ing the motion of a and arising from the whole universe.
Since we may assume the diferent absorber particles to
act independently, the inBuence functional has the form

C. Spontaneous emission

We come now to a crux in the discussion of this article,
which unless it can be overcome would end the entire
development. Whereas in Maxwell's theory the Beld has
independent degrees of freedom that, after quantization,

where F[a(t), a'(t)] is the in8uence functional exerted by
a typical particle b.

To calculate Fib' [a(t), a'(t)] we consider all transitions
produced by (3.60) in the absorber particle b If g;(b) is.

the initial wave function and gf (b) any final wave func-
tion of b, we have from (3.30)

~"'(~(&),a'(~)I = ) J gt(bt)gf(b'f) J~ ~g, (b;)g,*(b,')d b, d byd b', d b't, (3.62)

where

exp —(S@[b(t)] —S@[b'(t)] + SI[a(t), b(t)] —SI[a'(t), b'(t)] ) . 'Db17b'. (3.63)

With the interaction governed by (3.59), we write

Sr[a(t), b(t)] = eb A„, (b—) . bdt (3.64)
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in (3.63), with a similar expression for Sr[a'(t), b'(t)].
Because of the cooling produced by the expansion of the universe, b is usually in its ground state. We shall take g,

to be the ground state. We can expand the part of the exponential in (3.63) containing the interaction terms only.
The unity term in the expansion corresponds to gy —+ g, . Thus we have

(3.65)

r(')[a, a'] = 1+) Q~(by)gy(b't)g, *(b,')@;(b;)(1/h ) eI, A„, )(b) bdt A„, (b') b'dt
fW

~I

xexp ((i/h)(S@[b(t)] —S@[b'(t)]H17b'17bd btd b;d b',.d b&
- 2 - 2

+ terms in + ~ ~ ~

I

where A„I is calculated for the path a(t), A„I for
the conjugate path a'(t).

Let Et and E; be the energies of states gy and g;,
respectively. Then first-order perturbation theory shows
that the contribution to the above expression from the
transltlon tP~ M (/)y 1s'

r =R+b —a.

»r IRI » lbl, lal, we g«

1r = lrl = R+ —R (b —a).R

(3.68)

'
I

M[a(t)]M*[a'(t)]52( h )
(3.66)

In the absence of any dispersion, we would have, in the
Coulomb gauge,

M(a(t)] = j exp
'

dt @~(b)
i(Ey —E;)t

x A„( ) (b) . bg, (b) d b. (3.67)

To calculate (3.67), we proceed as follows. Take an origin
near a to measure the displacement a(t). Similarly, let
b(t) measure the displacement from an origin near 6. Let
the origin near b have a relative displacement K with
respect to the origin near a. Then the vector from a(t)
to b(t) is given by

) [~(i) . a]~(i)
r —r a i=1 2

where o.~~~ are two unit vectors which form a mutually
orthogonal triad with r/lrl.

The quantity r —r a varies only slightly with b, and it
is sufBciently accurate to replace it in (3.70) by R —R a,

(3.71)

We Fourier analyze (3.71) to get

/
//

/
/

///// /
/

/
/

/
/

/
/ /

/

//
/

/

Co a k'2vrilt' )l—RT' 1 —a R/R ( T )
exp

l

dt'

The range T' of t' is given by

(3.73)

A„( )(b) = ) ) [o.(') AI]o~ exp
l

2~iltl

l=—oo j=1,2 J
(3.72)

where

1t' = t+R+ —R. (b —a)R ) 0&t&T. (3.74)

Since b, K are not to be regarded. as varying with t, we
have

FIG. 3. A schematic diagram of interaction between local
particle a and absorber particle b.

dt' a. R
dt R
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so that changing the variable from t' to t in (3.73) gives

e 2iril( R b
T

with

T' = T —
R [a(T) —a(o)]
R

(3.77)

2irzl 6 a Rla exp, i
t — dt,T' i R (3.76)

The eÃect of dispersion in the cosmological medium
is to introduce both a phase change and damping into
(3.76), modifying it to

e 1 . 2irl t' R bl
exp —-~, + i

2 T~( R ) o

2 iril ( a. R)a exp,
~

t —
~

dt, (3.7s)

the phase change being expressed by y~ and the damping by 7~.
We now substitute (3.72) into (3.67). We shall make use of the fact (to be shown later) that yi is a very large phase

angle, and use this to wipe out any cross products of Ar, Ai, which arise in (3.66), except those with l = —l, giving

OC) 2 T' tf' 2

(e ei, /3R T' )[(Ef —E;) /h ] ) b;y(2irl/T') e ' exp —
~
Et —E; —

~

dt'
hq ' T')

x )
j=1 2

a Rin('&. a exp (27rli/T')/ t —
I

dt
R ).

, (a'. Rn(~l . a' exp 2iirl/ T'~ —t
~

dt, (3.7S)R )
in which we have already averaged with respect to all orientations of b to remove product terms in the components of
n(il and n( l, and where b,t( &, ) is the matrix element of b exp (i ~g,

'
R ] with respect to @, and vtrf. We have also

ignored variations of b over A+ in comparison with T . Expression (3.86) can be simplified further by the results

it' ( 2~hi l, , (' 2~lhl
exp —

~
E, —E, —,

~

dt' = 2~T'nS
~

E„—E;—T') (, T'p' (3.so)

OO
sin 0! = 1.

(srl —n) 2 (3.s1)

Writing

kK
hk =Ef —Ei, k=

R '

(e e~k /3R h )e "
~b t(k) l )

j=1,2

and using (3.80) and (3.81), we reduce (3.7S) to the form, say,

{j} —ik a+ikt gg {j} . i ik a' —ikt~~

(3.82)

(3.s3)

[1 + ~]n(k)dkR dRdA (3.84)

Since X is very small and the index is large, we can
rewrite (3.84) in the form

exp [A n(k)dkR dRdA]. (3.s5)

Suppose that at a distance R in a particular solid angle
dB, there are n(k) dk particles per unit volume with states
f and i such that (Ef —E,)/h lies in the range k to
k + dk. Writing [b;t (k) ~2 for the average of lb;t (k)

~

for
all systems satisfying this requirement, the contribution
to E[a, a'] from all absorbers between R and R+ dR and
in dO is

4+2 e2kd7 (k) 4ir e~ k
(3.86)

the damping expressed by v (k) being due to induced up-
ward transitions in the absorber. Thus (3.86) follows
from first-order perturbation theory. Remembering that
absorber particles contribute as a product, as in (3.61'I,
we next integrate the exponent of (3.85) with respect to
R and with respect to k. Using (3.86), and letting w ~ oo
as B ~ oo, we obtain

The function r(k) in (3.83) is just the optical depth of
the absorbing medium at frequency k. It is not hard to
show that
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exp (e /4' h)dO (j) ~

)
—ik a+ikidt

T

(
(j) I) ik a' i—ktdt (3.87)

Integrating finally with respect to A, we obtain

E[a(t), a'(t)] = exp (e /47r 5) dO
j=1 2

T

(
(j)

)
—ik a+i@ddt

k

T

(
(j) ~) ik a' —iA:ddt (3.88)

The subscript k has been added to o.~~~ since we are now

integrating with respect to B, and the vectors o.~~~ change
as dO changes k is a vector in dO.

The last part of the calculation is similar to the proce-
dure that led to (3.38). Expand the exponential in (3.88)
and retain only the first-order term in e /h. Previously
we had

e2 T
a Adt a'. A*dt

mould still have led to (3.38), we see that provided we

replace e2 jh2 by

e2 T
a. Adt G. Adt ) (3.89)

j=1,2

in which A was a specified field. Now we have the expo-
nent of (3.88). Noting that if A in (3.89) had not been a
real field

and provided we write A = o.& e ' +', the present
case is the same as the previous one. We obtain

q~„*(a)a - n~'le'" P('a)d a

2

exp (E„—E —+ Ak)t dt (3.9I)

Using (3.40), we see that E ) E is necessary to obtain a nonzero result, and that the spontaneous emission
probability per unit time is

(e /27rh)[(E —E ) jh] dO dk Q
k=1,2

(3.92)

in agreement with the usual expression.
Averaging (3.92) mith respect to solid angle and using

the same notation as in (3.53) gives

x dO. (3.93)

Nom equate the contribution from dB to (3.53) to q(k)
times the contribution from dB to (3.93). This gives the
following definition of q(k)

(3.94)

where hk = E —E„and I(k) is separated into the tmo
polarizations defined in (3.55). In the usual quantum
electrodynamics (3.94) is the relation between the field
intensity and the average number of quanta per vacuum
oscillator in the frequency range k to k+ dk. Although
quanta do not appear explicitly in the present theory, it

is interesting that we obtain the usual formulas by taking
the spontaneous transition rate as a reference standard.
It follows that, if I(k) mere to have the value appropriate
to a thermodynamic radiation field at temperature T,
q(k) would follow Planck's lam,

q(k) =—q(k) = (3.95)
1

in which the temperature scale has been chosen so that
the Boltzmann constant is unity.

The delta function in (3.92) gives an asymmetry be-
tween emission and absorption. Spontaneous transitions
are downward because we have taken the absorber par-
ticles as being in their ground levels, E, & Ef fol all
f. We see therefore that the asymmetry of spontaneous
emission arises from the assumption of a cold universe.
We shall return to this point at the end of this section.

D. The complete influence functional and the level shift
formula

The complete influence functional mas given by (3.65),
of which the two terms in the last line remain to be dis-
cussed:
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—(1/2h )

—(1/2h2) SI [a'(t), b'(t)] exp (—iSO[b'(t)]/h)@;(by)@,*. (b,'. )d byd b'. l7 b'(t).

(3.96)

It will be sufhcient to work out the erst of these terms, since the second can then be written down by inspection.
Inserting (3.72) for A„I in the expression (3.64) for SI leads to

—(e /2h) )
L=—ao

(A b)
—27I'2lt /T dt's

(A,*.b)e "y dt'exp (iSo[b(t)]/h)Q, *(by)g, (b, )d byd b, 'D b(t). (3.97)

Using ordinary perturbation methods for second-order transitions, (3.97) can be reduced to

-("/h') ) ):[(E.-E,)jh]'
l=—oo g

2 T'

vP,
*. (b)(b AI)egg(b)d b exp

] [E, —E—s —( 2vrl h/T')]t' )dt'
0

t'

exp
)

—[Eo —E; + (2vrlh/T')]t' (dt', (3.98)

where the summation with respect to g is over all intermediate states of b.
Now insert (3.78) for Ai in (3.98), to give

Eg —E; 5("/3h'~'T") ) ~

' „'
~ ) [b,, (2 1/T')~"-. ( 2~hi l,

exp (i/h)
~

E, —Eg — ~t' dt'
T' )

exp (i/h) ~ Eg —E;+ 27rhl/T' ~t' dt' 5i

a. Rln~~i a exp —(2~ii/ T')
~

t —
~

dt
R )

n ~ a exp (2vril/T')
~

t —
~

dt
( a K&

B

(3.99)

after averaging with respect to the orientation of b.
Although (3.99) appears complicated we shall find simplifications. For fixed @~, the main contributions come from

27r/h/T = E; —Eg. Only when this condition is satisfied can the integrals in the second line of (3.99) yield a
contribution that behaves as T' . Defining

we can therefore write

E; —Eg R
B' (3.1oo)

, , „) ~'~b, ,(y)~' e—.i"& —ikt' dgI

Furthermore

x )
j=1 2

n{j~ . ae-ik'dt
T OO

{y) ~~ik ad 2mij]!exp, (t —t —t'+t') . (3.101)

exp (t —t t'+ t') = T'b(t —t t'+ t'). — —
Tl (3.1O2)
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We must therefore have t ) t since t' & t', and (3.101) becomes

2

, , ) k2e- (")~b,,(k)[' )
g j=l,2

T t
(j) ~ —ik a—iI td~ (~)

0
(3.103)

This contribution to F( ) must be added to (3.88).
As before it is suKcient to consider a single state g, since all states were automatically included in the discussion

that followed (3.88). Indeed the summation with respect to all absorbers proceeds exactly as before, and in place of
(3.87) we now have

2

F[a(t), a'(t)] = exp dO4~'I kdk+ I (
' ') "+ *'d't*

k (
(j) i) ik ii' —ittt'dtl
k

T
(

(j)
)

—ik a—ietdt
k

T

(
(j) () —ik ~'+ivtdt
k

t

(
(j) ~

)
ik a+iktdt

k

t

(
(j) ~ I) ik a' vktdt— (3.104)

in which we have also included the second term of (3.96).
The expression (3.104) is an influence functional and it obeys the general rules discussed by Feynman and Hibbs

[1965, Eq. (99), p. 348]. If we identify the paths, a(t)—:a'(t), the exponent in (3.104) vanishes. The paths do not
act on themselves via the response of the Universe.

The new terms in (3.104) have no effect on the calculation of P(m ~ n), m P n, but they are necessary to obtain
P(m m m). We now show that

P(~~m) =1 —) (3.105)

P(m ~ m) is given by writing m for n in (3.31). Expanding the exponential in (3.104) to first order we have

P(m -+ m) = 1 —(e /4vr h) t('' (ag) exp So[a(t)] Ii—(a;) dn

x ) ( (j)) —ik m —iktdt
k (a n„'))e*"' +'"'dt17 a(t)d a d a;

—(e'/4vr'h) &-(~', ) ~xv (
—-„~0[~'(&)[)0' (~l)

j=l 2

T
(~)) —ik~'+.ktdt (

~ ~ (2)) ikm' iktdt~s 1—(t)ds I ds )
k k f 'c (3.106)

The term involving a(t) separates from the term involving a (t). The path integrals are not hard to evaluate. We
obtain

P(m —i m) = 1 —(e /47r h) )
j=1 2

dO kdk P [(E„—E )/h] P* (a)a„') ae '" (t)„(a)d a

exp —(E —E„—hk) (t —t) + exp —(E —E„—hk) (t —t) dt.

The term in exp (i/h(E —E„—hk) (t —t) j in (3.107) comes from the quadratic term in the path a(t) in F[a(t), a (t)],
and the term in exp [i/h(E —E —hk)(t —t)] comes from the quadratic term in a'(t).

The last two integrals of (3.107) give

sin[(E —E )/h —k]t ( E —E„')
(E -E„)/h-k q h

(3.108)

Hence (3.107) is just 1 —P& && P(m -+ n) Since P(m ~. n) is zero for E ) E we obtain (3.105). Probability
is therefore conserved.

The system a is by hypothesis in the state m at t = 0. The eKect of the response of the universe is to change the
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amplitude for the system to be in the state m at time T from P exp (—iE T/h) to

(3.109)

for T not too large. The probability of the system being in the state m at time T is therefore

iT+ 0(b,E' ).

f pT iAE T) ( pT iAE T']Pm-+m = i1 — — 1—
n )( 2 n )

iAE ) fp
E2

(3.110)

Suppose we identify the second and third terms on the right-hand side of (3.110) with the second and third terms on
the right-hand side of (3.106). Then

—p+i ]T= fff 4' (at)tt (a) exp (
—Ee]a(t)])f dB

T
a o,' e '"' '" dt a. o. e' ' +'" dt's a&t&~d a d a .k k af

3=12 ' 0
(3.111)

Care is needed in evaluating the path integral because a "crossover" term arises at t = t. This term yields

while the main term in the reduction is

f kdk, (3.11~)

OO 2

(e /4x k) ) f dBf kdk) ](E„—E )/k] 4„'(a)a. ax e
*'"'

4 (a)d a
2=1,2 n

T t
x dt exp (E —E —kk)—(t —t))dt

0 0

) P(m -ex)+ (te*/4x'4) ) fdBf kdk
0

g —1)2
2 T t

P*(a)a. az(le ' '

P (a)d a Ch sin [(E —E„—hk)(t —t)/hjdt.
0 0

(3.113)

Collecting terms

OO

2 h 2T
—+ ~E = ) I(m~n)+ ~dk+, ) i

- "i ) ~P
Vlm 0 47r'

kdk

E —E„—hk

x * aok -ae ' ' ada (3.114)

I

The summation in the last term is not restricted to E ( E . The divergent term on the right-hand side does not,
however, survive in the expression (3.110).

E. The radiation cutofF at the absorber

The cosmological features of the response of the uni-
verse was discussed in Sec. II.D, where Table II gave
results for the classical electromagnetic theory. Of the
cosmological models discussed in the literature only the
steady-state and quasi-steady-state theories raet the re-
quirements of the absorber theory, and the same may
be anticipated in the present quantum version of the

absorber theory. There may well be other cosmologi-
cal models still not examined in detail that also meet
the same requirements. Indeed any model with a proper
density of matter that does not fall below some nonzero
lower limit along the future light cone is expected to sat-
isfy the required response condition. Here we consider a
further feature of the absorber theory using the steady-
state model as the simplest example of such a class of
models.
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The work of Secs. III.B—III.D was in Bat spacetime.
This work can be taken over to cosmological spaces of the
Robertson-Walker type by making a conformal transfor-
mation of the latter, as in Sec. II.C.3. There is, however,
the slight notational problem that in Secs. III.B—III.D
the time was denoted by t, whereas in II.C.3 the time t
was in the cosmological space and 7 in the fIat confor-
mal space. To retain the explicit formulas of III.B—III.D
we therefore invert t and T as they appeared in II.C.3.
For an observer at t = O, r = 0 the line element of the
steady-state model then takes the form

ds = (1 —Ht) [dt —dr —r (dg + sin 9dg )],

(3.115)

where H 3.10 sec is a constant of the theory.
In the spontaneous transition E ~ E of the local

system, the important frequencies involved in the infIu-
ence functional (3.104) are those in the neighborhood of

exp
2mvNe2

m(d 2 (3.122)

where K is the number density of electrons, e the elec-
tronic charge, and m the electronic mass. Using (3.117)
and (3.119), the damping produced over the coordinate
range 0 & r & B is

2~vNe2
(3.123)

a process with ~;„~0. Collisional absorption provides
such a process, and will be used from hereon, although
any process with ~;„m 0 will suKce equally well.

At the low frequencies at which the main collisional
absorption occurs it is sufFicient to use classical consid-
erations, according to which the alteration of a wave of
frequency w over a length dl caused by collisions with
&equency v is

k = (E —E„)/h.

This frequency has to be matched by the value of
(Ef —E;)/h for the absorber transition Q, —+ gf. If, how-

ever, we wish to consider E, , Ef, with respect to proper
time at the absorber, it is necessary to take account of
the redshift effect of the expansion of the universe. Thus
when a wave, starting with frequency A: at the source,
reaches an absorber at coordinate r, the proper frequency
has become

For large B, appreciable damping occurs when

2m v&e2

mI 2~ (3.124)

2vNe2
efF— (3.125)

which corresponds to an efI'ective proper &equency

~ = (1 —Hr)k, (3.117)
For ionized hydrogen, v at cu,g is given by

and E, , Ef, with respect to local proper time are related
to A:by

( e' )' /mv'l
v = 2vr&vi

i
ln

i

i mv2 ) (bc',s )
(3.126)

Ef —E; = hk(1 —Hr).

If we displace the absorber by a proper distance dl

away &om the source, the frequency in tune with the
wave changes by dw, where

where v is a typical electron veleocity. Taking H
3.10 ~ sec, W 10 9 cm s, v = 1/300 (of velocity of
light), and substituting for e, m, 5 in (3.125) and (3.126)
we can solve for ~,g and v,

dr = (1 —Hr)dl (3.119)
80sec, v=13x10 sec (3.127)

The second relation in (3.119) follows from the conformal
transformation. Hence we get

(3.120)

Thus a wave with frequency greater than 102 sec —1 is
erst redshifted to ~ 10 sec and then absorbed. The
efI'ective absorption takes place over a proper distance of
the order of 10 cm. A wave with frequency less than
10 sec is absorbed without having to be redshifted.

From (3.127) we note that the dimensionless parameter

Suppose the absorb ers are efI'ective over a range
[w,„,cu „] of frequencies. Then if k )w, the range
of / over which the absorbers can be in tune with k is

4' Ne2
5.10

mQJ g
(3.12S)

&max

dl=H
~min

= H ln . (3.121)
~min

For complete absorption, we need l ~ chic. Hence we need

while the real part n of the refractive index given by
1 —27r&e /mw, & is a little different from unity, showing
that cu ~ is appreciably larger than the plasma frequency
(4vrNe /m) ~2, showing also that the @rave is effectively
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Hdr = (u, sd k/ k. (3.129)

absorbed well before the redshift causes the frequency
to fall so low that the real part of the refractive index
becomes negative, with the wave no longer able to prop-
agate.

From this deduction two important inferences can be
made. One explains the situation at (3.79) where random
phasing was used to average cross products of A~ and
A~, l g —l', to zero. Consider two waves with slightly
different values of the initial frequency, k and k + dk.
From (3.124), absorption occurs at r and r + dr with

For w, g ——80 sec, H = 3.10 sec, T = 10 sec as
an example, the cutoff on k is at 2.4 x 10 sec . Above
this limit the response condition fails. It does so for the
same value of k for every observer in the cosmological
Hubble fI.ow, provided every observer examines the sam,
radiation process with the same T.

We have thus deduced the existence of a very high fre-
quency cutofF. It has no practical relevance for the cal-
culation of transition probabilities. But at a later stage,
when we come to the radiative correction process in rel-
ativistic quantum electrodynamics, it will be of critical
importance to the logical development of the theory. It
avoids the infinities of quantum electrodynamics.

Prom the line element (3.115) the proper distance associ-
ated with this coordinate displacement is (1 —Ht) dr,
and with r = t along a light ray, this is the same as
(1 —Hr) dr. Using (3.129) and ~,g = (1 —Hr)k this
proper distance is

H dk/k 3 x 10 dk/k sec 10 dk/k cm. (3.130)

r = H (1 —u),s/k), (3.131)

while the later oscillations emitted at t = T are absorbed
at t=r with

r = T+ H '(1 —(u.~/k). (3.132)

Since, however, the cosmological model has an horizon
cutoff at k = H we cannot have C = r with r given by
(3.132) unless

k ( ~,gH '/T. (3.133)

For k 10 sec at optical frequencies this is a large
distance even for dk as small as 1 sec . The proper
distance between the particles absorbing the wave of fre-
quency k and that of frequency k+ dk is very large com-
pared with the interparticle distance. The responses to k
and to k+ dk are therefore uncorrelated in phase and the
cancelling of waves with /' = —l at (3.79) is explained.
The same issue arises in the usual version of quantum
mechanics. How is random phasing between the degrees
of freedom of the quantized field to be understood? So
far as we are aware it is assumed and not understood.

The second inference that will assume importance in
Sec. V is that a frequency cutoff now emerges cosmolog-
ically (see Hoyle and Narlikar, 1993).

In the above discussion we wrote that emission at r = 0
occurs for t 0, not t = 0, since some finite interval of
t is needed for emission to take place. The duration of
emission for spontaneous emission was 0 & t & T with
T && k, this condition being necessary to establish the
delta-function property at (3.40). The early oscillations
emitted immediately after t = 0 are absorbed by particles
at t=r with

IV. RELATIVISTIC QUANTUM ELECTRODYNAMICS

A. Introdoction

The work of the preceding section has amply demon-
strated that the Wheeler-Feynman absorber theory of ra-
diation can be extended into the quantum domain. The
explanation of the phenomenon of spontaneous transition
was hitherto considered to demand a quantum field the-
ory. The degrees of freedom vested in the electromagnetic
Geld make the quantum vacuum nontrivial and therefore
the atomic electron is supposed to jump down the energy
ladder even in the absence of the external Geld, because
it interacts with the Geld vacuum.

In the action-at-a-distance picture, the role of the vac-
uum is taken over by the response of the Universe. The
calculation of the transition probability in the previous
section has shown that provided we live in the right type
of universe (perfect future absorber and imperfect past
absorber) the answer comes out right. Thus we could ar-
gue that a quantum field theory is sufBcient but not nec-
essary for understanding spontaneous transition. Can
action at a distance replace quantum Geld theory alto-
gether just as it can demonstrably replace the classical
field theory'?

The answer is not immediately obvious. First of all,
spontaneous transition represents but the tip of the ice-
berg of phenomena coming under the purview of quan-
tum Geld theory. What about phenomena like Compton
scattering, pair creation and annihilation, vacuum po-
larization, self-energy effects like the Lamb shift, etc. '?

Unless the full gamut of quantum electrodynamic results
are described by the action at a distance we cannot look
upon it as a viable alternative to field theory.

In this section we will attempt to review the progress
made in the above direction. This necessitates, however,
the development of a formalism for path integrals for rel-
ativistic particles. First we will discuss the motion of a
single relativistic fermion, i.e., a Dirac particle in terms
of Feynman's path integral formalism suitably extended.
We will then discuss a system containing many fermions
interacting via the electromagnetic action at a distance a
la Fokker. This will bring in the response of the universe
and the quantum analog of the Dirac formula [cf. Eq.
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(2.3)] for radiative reaction. We will then consider the
issues relating to self-action and renormalization.

B. The rnotien of a Dirac particle

or the classic book by Feynman and Hibbs (1965).
Another useful result relates the particle propagator to

the complete set (u ) of normalized stationary eigenso-
lutions of the homogeneous Schrodinger equation

1. The nonrelativistic propagator K[2; 1] = ) u„(2)u„(1)0(t2 —t, ). (4 5)

K[2;1] = exp {iJ[1'])&I' (4 1)

where 1[I'] is the classical action computed for path I'.
The path integral can be evaluated and the answer is

We first summarize the path integral approach from
Sec. III in a form that will be adaptable to the relativistic
case.

Consider the motion of an electric charge a with mass
m and charge e moving freely and nonrelativistically
from a spacetime point 1 to a spacetime point 2. I et
us assume that the spacetime coordinates of 1 and 2 are
respectively (ai, ti) and (a2, t2). In Newtonian mechan-
ics this particle would move along a definite path I' in
spacetime connecting point 1 to point 2. This is the path
of zero acceleration. In quantum mechanics, as discussed
in the last section, there is no such unique path but a
whole range of paths I' all starting at 1 and ending at 2.
The overall motion of the particle from 1 to 2 is described
by a propagator K[2; 1) that is obtained by summing the
probability amplitudes along all the paths according to
the formula:

2. The relativistic free particle

The classical action for a relativistic particle of rest
mass m is given by

J= — m da. (4.6)

This action, however, does not describe a fermion like
an electron because it contains no information on the
intrinsic spin. Rather than look for a classical action
containing this information we will follow the alterna-
tive procedure of Eq. (4.4), for we already know that the
wave equation generalizing Eq. (4.3) is the Dirac equa-
tion which for the propagator K[2; 1] becomes

Note that the propagator is time asymmetric in the sense
that it assigns a zero probability amplitude for motion
backwards in time while the full set of eigensolutions is
used to describe the amplitude for forward propagation.
In the discussion of the relativistic motion to be consid-
ered next, this aspect undergoes a serious modification.

K[2;1] =
27ri(t2 —ti)

im. a2 —a1 '
xexp 0(t2 —ti).

2(t, —t, )

Here 0 is the Heaviside function. [The reader is reminded
that we have taken 5 = 1, c = 1.] The propagator K[2; 1]
satisfies the well-known Schrodinger equation

(y', +im. )Ko[2;1] = ~4(2, 1). (4 7)

For reasons to be made clear shortly, we have distin-
guished the propagator by a suKx 0. In analogy with
the nonrelativistic limit, Ko[2; 1] is expected to satisfy
the temporal condition

Kp[2; 1] = 0 for t2 ( ti. (4.8)

Instead of using (4.1) we could proceed in the fol-

lowing way. Along the typical path I' mark points
X;, i = 0, 1, 2, . . . , N, with the end points 1 and 2 cor-
responding to Xo and X~, respectively. With N su%-
ciently large, we can consider a typical segment X,X,.+i
as infinitesimal. Then define P(1) as the product

However, here we run into the well-known problem
of negative energy states. If we express the solution of
Eq. (4.7) in terms of an expression like (4.5) we find that
the complete set (u ) has to include negative energy so-
lutions also. Dirac had sought to get around the problem
via the "hole theory, " thus electively converting it into
a many-particle problem.

Feynman (1949) got around the problem of negative
energy states by redefining the propagator solution of
Eq. (4.7) in the following way:

P(I') = A, 'K[X;;X; i], (4.4)

where the A; are normalizing constants. Proceeding to a
limit as N —+ oo, we can recover the expression (4.1). In
a sense Eq. (4.1) is the inverse of Eq. (4.4). For details
we refer the reader to Feynman's original paper (1949)

u„(2)u„(1), t2 ) ti,
K+[2;1]= &+ ' P u„(2)u„(1), t2 ( ti

E„(0
(4.9)

Notice that the propagator K+[2; 1] allows propagation
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backwards as well as forward in time. The positive en-
ergy states (E„)0) contribute to forward propagation
while the negative energy states (E„(0) contribute to
backward propagation. In standard language we say that
a negative energy electron going backward in time cor-
responds to a positive energy positron going forward in
time. We shall refer to K+[2; 1] as the Feynman propa-
gator.

Let us now see how all this affects our definition of the
probability amplitude if we seek to generalize Eq. (4.4)
with the Feynman propagator K+ replacing Ko. One
di8'erence is immediately apparent. In the nonrelativistic
case a path that turned backwards in time would auto-
matically have zero probability amplitude. Not so any
more. We could now have paths as shown in Fig. 4 with
nonzero amplitudes.

How do we interpret these paths? In principle they
tell us that a forward (in time) moving electron can be
scattered to go backwards in time and vice versa. This
with Feynman's reinterpretation corresponds to the phe-
nomena of pair annihilation or creation which can hap-
pen with or without any external electromagnetic distur-
bance. We will next consider how these cases are to be
looked at in the action-at-a-distance picture.

amplitude calculation provided we use K+ [2; 1] and mul-

tiply the amplitude by C„, the amplitude for a vacuum
to remain a vacuum. C„ is given by

C = exp( —L), L=)
n&2

where I & & is the amplitude for the occurrence of a closed
loop in which A; acts n times:

(4.i2)

It can be shown via Furry's theorem that L~ ~ vanishes
for odd n [cf. Bjorken and Drell, 1965, for example].

Can we use the above result in the action-at-a-distance
framework'? Not directly, since Feynman used Geld the-
ory to arrive at it, i.e., he had to use quantization of
the fermion Gelds. However, it is possible to rederive the
result without recourse to second quantization, as was
shown by Hoyle and Narlikar (1971). We briefly describe
this work.

Like the propagator Ko also defines another Ko by the
relation

C. Motion in an external potential

1. The perturbation expansion
K, [2;1] = —0(ti —t2) ) u„(2)u„(1). (4.i3)

[P2 +ie P (2) + im ]K+ [2; 1] = b4(2, 1). (4.10)

Both in Eqs. (4.7) and (4.10) a suitable limiting process
is used to define the derivatives of the Ko or K+ propa-
gators.

The result proved by Feynman, using second quanti-
zation of the particle wave function [cf. Feynman 1949,
Appendix], was that we can ignore the hole theory in an

Given the Feynman propagator for a free particle a,
we next ask for a quantum-mechanical description of a
charge e moving under the external electromagnetic po-
tential A, of other electric charges. Instead of the prop-
agator of Eq. (4.9) we now have another denoted by
K++[2; 1] which satisfies the equation

Thus the Ko [2; 1] propagator describes motion back-
wards in time within the past light cone at point 1. To
have a more symmetric notation, we will denote Ko[2; 1]
of Eq. (4.7) by Ko+[2; 1]. Both Ko satisfy the inhomo-
geneous Dirac equation (4.7). Ko+[2; 1] is nonzero along
the future light cone at point 1.

Corresponding to these two propagators, we also dis-
tinguish between two types of paths, I && going forward
in time and I'2i going backwards in time in going from
point 1 to point 2. Now use formula (4.4) to define the
amplitude P(I'2i) along I'2i, while using a similar expres-
sion but with I'2+& replaced by I'2i to deGne the amplitude
along I'2i. The path integrals corresponding to these def-
initions ensure that

(4.14)

FIC. 4. A path from 1 to 2 could have reversals in time with
each segment (backward or forward) having a nonzero prob-
ability amplitude.

Now suppose that we have a free particle in the four-
dimensional spacetime slab ti & t & t2 and assume that
the amplitude for the particle to reach t = ti from its
previous history is given by g+(1). Likewise at t = t2 we
denote the amplitude for the particle to come from the
future t ) t2 by g (2). Thus the probability amplitude
for the particle to be at an interior point 3 is given by
g(3) which is the sum of amplitudes along all I'a+i type
paths coming from points 1 on the time section t = tq
weighted by g(1) together with amplitudes along all I's2
paths from points 2 on the time section t = t2 to the
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point 3 again weighted by g(2):

g(3) = Ko [3; 1]&4/+(1)d xi

Ko [3;2]p4Q (2)d x2. (4.15)

even though there may be no Q at t = t2 . Similarly,
we could have Q+ g 0 at t2 originating solely from g at
t2 W. e therefore wish to know, what are g+ on the time
section. t = t2 and g on t = ti given a g+ on t = ti and

= Oont=t2?
Formally, we have

g(3) = K+[3; 1]p4$+(l)d x.,

K+[3;2]p4@ (2)d'x2. (4 16)

We impose as a boundary condition that g+ (1) is made of
positive energy solutions while Q (2) is made of negative
energy solutions. Then Eq. (4.15) is equivalent to the
relation

P (12i)p4$+(1)'DI'2id xi (4.19)

which includes paths with reversals. This expression can
be calculated using the definitions given above and the
standard path integral evaluation procedure [cf. Feyn-
man and Hibbs, 1965]. The calculation is given in Hoyle
and Narlikar (1971) and we simply quote the result

Thus the Feynman propagator serves the convenient
role of book keeping of positive and negative energy
states, of how the former travel forward in time along
paths I'+ and the latter backwards in time along
paths I

Consider next the external potential A; acting on the
particle which is such that A, vanishes outside the slab.
In that case we may have scattering of paths backwards
and forward in time due to the potential. Here again the
K+ propagator helps in the book-keeping process. Only,
we need to invoke the perturbation expansion to keep
track of how many times the particle has been scattered.

To begin with, the amplitude for a path. I'2z or I 2 ln
the slab is defined by

&"(2) = K+[2; 1]p4$+(1)d x„ (4.20)

where

+(—ie) K+[2;4] P (4)K+[4;3]

x $ (3)K+[3;1]dTsd~4+. (4»)
A similar analysis gives us Q (1'):

(1') = K+[1'; l]p4@+(l)d xi, (4.22)

K~[2;1]= K+[2;1]—ie K+[2;3] $ (3)K+[3;1]d7s

P+(I'2+i) = P(I'2+i) exp ie—A, da'

P"(I'i2) = P(l"i2) exp A, da'

with the understanding that point 1 is on t = t~ and 2

on t = t2. Paths within the slab need not be monotonic,
however, with respect to t. Suppose we have a path from
1 to 2 with 2n reversals. Denoting intermediate points
by i, sections i to i + 1 are monotonic, and the amplitude
for such a path is given by

P"(I'») = PA(l + (4.18)

where the plus sj.gn holds for the forward going sections
and the minus sign for the backward going sections.

We return to a point that was taken for granted in the
discussion so far. In the absence of an external potential
A, there would be no reversals, with the forward going
paths continuing forward and likewise for the backward
going paths. (Later we will reexamine this assumption
in the light of the response of the Universe; but for the
time being we will continue with it. ) In the presence of
A, , however, reversals can occur, with paths starting at
ti ending also at ti. In this case we get a @ at t = ti

where K+ [1'; 1] is given by replacing point 2 in Eq. (4.21)
by point 1' on the time section t = t~.

Equation (4.21) is the perturbation expansion and is
equivalent to Eq. (4.10). What about the factor
which appeared in the Feynman calculation? Does it
have an analog in the particle sans field framework de-
scribed here? We will consider this question next.

2. Vacuum loops

The answer to the above questions is provided by in-
cluding the as yet ignored feature of antisymmetrization
of the wave function. The basic concept of indistinguisha-
bility of identical particles in quantum mechanics inter-
venes in the above analysis in the following way.

In Fig. 5(a) we have two particles going forward in
time: the path I'zz describes the motion of one parti-
cle from point 1 to point 3 while path I'24 describes the
motion of the other particle from point 4 to point 2.
However, when we want the amplitude for there to be
a particle at 3 and at 2, given that each has a particle
at the earlier epochs at points 1 and 4, the answer must
take note of the exclusion principle, and is obtained by
subtracting from the amplitude for Fig. 5(a) the amph-
tude for Fig. 5(b), wherein we have interchanged the final
states with the particle at point 1 going to point 2 and
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A, (

(a)

I'IG. 5. Closed loops and antisymmetriza-
tion. (a) and (b) illustrate the result of an-
tisymmetrization, which when applied to a
double scattering process, shows how a closed
loop arises in (d) from antisymmetrization of
(c).

(c)

A;(4)

1 . 2———ie
2

T-(If+[3;41 8 (4)I~+[4; 3] 8 (3))

xdrsdr4v+(2) (4.23)

besides the second-order term from the diagram 5(c) ob-
tained earher fI'o111 the perturbatlon expa1181011 (4.21).
Notice that apart from the unity term, the coefIicient
of v+(2) in Eq. (4.23) is the lowest-order term in the ex-
pansion of C . In fact, if we proceed further, using higher
orders in the perturbation expansion following the anti-
symmetrization rule, we will recover the full factor C .

Hoyle and Narlikar (1971) have also shown that the
quantity L in Eq. (4.11) is equal to the path integral
over the loop amplitudes defined as follows:

L = P(I' ) exp I',e A;dl' 271' . —
ro

(4.24)

that at 4 going to 3.
What has been stated just now for a pair of particles

also has relevance to the perturbation problem discussed
above. In Fig. 5(c) we have a particle starting at point
1 and reaching a point 2 after being scattered twice by
the potential A,. at points 3 and 4. Notice that the con-
figuration of the I'+ paths in this figure is the same as in
Fig. 5(a) and so our antisymmetrization criterion leads
us to include also the amplitude for the path configura-
tion of Fig. 5(d) that corresponds to that of Fig. 5(b).
This last diagram, however, describes a particle moving
unperturbed from point 1 to point 2, along with a closed
loop which has double scattering at points 3 and 4.

For a quantitative description of this idea see Hoyle
and Narlikar (1971). The result can be stated as follows.
If to zeroth order the particle wave function at point 1
is v+(1) then to that order it is v+(2) at point 2. [The
plus suKx denotes that it is made up of positive energy
solutions. ] Then corresponding to Fig. 5(d), we have to
add to the amplitude the term

Here I" is a typical closed loop and the probability ampli-
tude P(I'o) is defined for a free loop by the same prescrip-
tion as that of Eq. (4.4), but as before, the infinitesimal
sections of it are propagated by Ko+ rather than by K+.
I ikewise the exponential factor in Eq. (4.24) denotes the
influence of the external potential A; on the loop I', fol-
lowing the same formula as Eq. (4.17).

The expression (4.12) can now be obtained from
Eq. (4.24) by expanding the exponential phase factor and
using a perturbation expansion. We leave it to the reader
to convince himself that this indeed is the case. In partic-
ular, he can verify that even though the propagators Ko+

were used in the definitions of the probability amplitude
along a path or a loop, the final answer contains the K+
propagators which keep the correct accounting.

D. Many particle interactions and the quantum response
of the Universe

1. The problem of many particles

We begin by restating the results obtained so far in a
slightly difFerent notation. We will denote our spacetime
slab by 0 & t & T rather than by t-i & t & t2., and instead
of denoting the wave functions by suKxes + we will use
the notation of "in" and "out." Thus g;„denotes what we
earlier called g+ on t = 0 and itt on t = T, while g „1
denotes what we earlier called Itt+ on the time section
t = T and g on the time section t = 0. We will denote
by S the surface of the slab and n' will denote the unit
outward normal to dS, the typical surface element.

To describe action at a distance we need to general-
ize Eq. (4.22) to a system of many particles a, 6, c, . . . .
We will proceed step by step. First suppose that these
particles are all in an external potential A; but do not
interact with one another. Then their wave function wIll
follow the formula
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4 „t[a', b', . . .] = K+"[a'; a] y. K+" [bI; b] yb
K+[a';a] = P(1 ) exp —ie A;da' BI'

x . @;„[a,b, . . .]dS dSb . . (4 25)

Here the 4' function has four spinorial components for
each particle and the propagators act independently on
these particles. From previous work we have

(4.26)
where the typical path for particle a starts from point a
and ends on point a' on the surface S. Thus the multipar-
ticle propagator is simply the product of the individual
propagators

K [a', b', . . . ; a, b, . . .] = A.,da' —ieb
bjb

to

(4.27)
Stated in this form the transition to the interactive multiparticle system is natural. The formula (4.27) is generalized

K [a', b', . . . ; a, b, . . .] = P(I' r )P(I'b(b) exp [
—ie

a'a
A, da — ]exp(iB)171 171 b b (4.28)

where the extra factor expiB in the path integral is none
other than that given by the Fokker formula for interpar-
ticle action. We have

B= —) ) eeb
b

b(s~e) q,bda*db" (4.29).

We now show that all the well-known results for quan-
tum electrodynamics must follow from the formula (4.28)
provided, as in the classical theory due note is taken of
the response of the Universe.

Before coming to grips with this fundamental problem
we make one comment on the wave functions 4;„and
4 „t. The exclusion principle requires the wave functions
to be antisymmetric with respect to the interchange of
any two particles, and if 0';„ is antisymmetric then so is

But what does this mean in the present path in-
tegral approach? Note that the exclusion principle pre-
vents two paths I', 1 b b from crossing if a g b; more
specifically, paths with common points make a zero con-
tribution to the amplitude. Paths for the same particle
can, however, cross since they are alternatives for the
propagation of the particle. Thus we can tell from this
property whether two paths belong to the same parti-
cle or di8'erent ones. Note also that the vacuum loops
arose when we considered the antisymmetry property for
a single particle.

expression in the full relativistic problem of interacting
electric charges.

To begin with, we note that in Eq. (4.28) it is the paths
outside the slab, i.e., those satisfying the temporal con-
ditions t & 0 or t ) T that contribute to the potentials
A;. The discussions of preceding sections tell us how to
deal with the external potentials arising from the past
portions, i.e. , t ( 0. The future portions contribute be-
cause of the b'(s ) interaction. Without loss of generality
we can take

& —&~ 0+ &~)T A«o —0. (4.3O)

e eb b(s„'~)g;b da'db"

= ——) e A( );da' (4.31)
1

Then the future A~&& interactions in Eq. (4.28) are the
so-called response of the Universe

Turning now' to the interaction term B in Eq. (4.28),
although we have written it in the classical fashion, we
will later show that technically it should include the hith-
erto excluded self-action terms a = b. For the time being
we will continue with the classical expression (4.29) and
exclude these terms.

Thus, we have

2. The influence functional where

We have already seen in the previous section how the
quantum response of the universe appears in the form
of an in8uence functional in the problem of transition
of an atomic electron. We now look for a corresponding

A( );(X) = ) eb b(sX~)g;bdb"
bga

= —[A("),(X) + A( );(X)]. (4.32)
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Here we have separated the potentials into their advanced
and retarded components as per our earlier discussion of
classical direct-particle electrodynamics. Therefore, the
classical electrodynamic action is written in the form

the negative frequencies. In the explicit example of
Sec. III we saw how the quantum transitions in the fu-
ture absorber lead to this distinction. We generalize the
concept here.

We define the positive and negative &equency compo-
nents of the advanced and retarded potentials by

(4.33)

(We have not considered the inertial part of the action
here, which is of course assumed to be present. ) If the
Universe is a perfect future absorber and an imperfect
past absorber then the classical response is such that

A (X),&T = —) [A (X)"' —A (X) ]. (4.34)

f "]" " '" "'"v ]4M]
b

A*(x)~ = ) eb
b

4(tx —t& + Ix —x~ I)

(4.37)
where the b~ functions have the usual meaning

Hence the classical action becomes (4.3S)

fig
I+ l]~(-)"t ~( ) ~

]ig
a

(4.35)

It can be shown that although the individual expressions
defined in Eqs. (4.36) and (4.37) are not vectors, the
differences

The first term in the above sum is the total retarded
potential of all other particles 6 g a while the second
term is the Dirac radiation reaction formula. What is
the corresponding quantum version of this results

This is where we refer back to the discussion of Sec. III.
There we saw that the apparently local behavior of a
quantum system actually involves the response of the
Universe via an influence functional which arises when
we take into account how the absorber reacts back (via
advanced potentials) on the local system. The influence
functional enters into any probability calculation in the
path integral approach (cf. Feynman and Hibbs, 1965)
whenever the e8'ects of external variables on the local
system are integrated out. It is a double integral over
paths and conjugate paths.

In Sec. III we saw how the conjugate paths arise in
the calculation of probability for spontaneous transition
of the atomic electron, involving the response of the Uni-
verse, when the efFects of the individual absorber parti-
cles are integrated out. The calculation requires paths
a(t), b(t), . . . starting from points a, b, . . ., etc. in addi-
tion to the conjugate paths a'(t), b'(t), . . . which start
from points a*,b*, . . . on S. But both the paths and
conjugate paths end at the same points a', 6', . . ., respec-
tively. As we saw in Sec. III we end up with a transition
probability instead of a transition amplitude. Experi-
ments, however, are concerned with the measurements of
the former only and so the theory does not sufFer from
any incompleteness on this count. In fact, we saw that
the infinite term cancels out in the full probability calcu-
lation of Eq. (3.110).

The paths and conjugate paths together permit the
separation of positive and negative frequencies with the
paths giving positive frequencies and the conjugate paths

Ap(x)„= -') ~[AI'l(x);" —AI'~(x)'. ]
b

+[A' (X)"'—A,'.
'

(X) ]). (4.39)

As stated above, the paths carry positive &equencies
and the conjugate paths carry negative frequencies. If
we imagine a coalescence of paths and conjugate paths,
Eq. (4.39) collapses into Eq. (4.34). To obtain an equiva-
lent condition for A'; (X)t&T we interchange paths with
conjugate paths and positive with negative frequencies,
and we find that

A,
'

{X)t&T = A, (X)t&z. {4.4O)

Typically, in the calculation of the influence functional
we have two pairs of paths and conjugate paths (a, a')
and (b, b') for pairs of interacting particles a, b We.
therefore have four possible combinations. Consider the
combination (a, b) which has two terms. The first is

&b 0 8~~ 'l7 IcCLG l6

&om the time symmetric interparticle action, and the
second

[Ai ret Ai adv] [Ai ret Ai adv]

transform as vectors. These combinations have no place
in classical electrodynamics, but they arise in quantum
electrodynamics in a natural way.

The quantum response corresponding to the classical
expression (4.34) is then given by
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2
tw &ta

[~+(s~~) —~-("~~)]~'~«'db" + I&+(~pA) —~ ('-a~)]p ~~~ ~6")

arises from A;. The time inequalities in the integrals re8ect the advanced and/or retarded nature of the potential
components. A little book-keeping exercise gives (cf. Hoyle and Narlikar, 1974) the sum of the above two contributions
as

8+ (s~~) rj, l, da'db" (4.41)

Likewise, the combination (a', b') gives

+e~eg (s~,~, )q, kdo, "db'" (4.42)

The remaining two coinbinations (a', b), (a, b') combine to give

b+ (s„',~)g;„da"db"—
t~ PtA,

(s~~, )rj, l, da *db"

t~l )tQ

b+ (s~,„)g, i,da'db'"—

tA )t~l
(s'„)pspd db ",o). '' (4.43)

We now have the in8uence functional in the form that generalizes Eq. (3.104) of the previous section:

pfa, b;a', b'] = exp (e eg/4m ) dB KdE( l+ik (xg —x~)]g,,da'db"

exp[i~i~~ —t~
l
+ ik (x& —xa )]q,y«'*db'"— exp[iK(t~ —t~ )

+'Lk (xi'~ —x~)]'g~kdn db exp[ik(t'ai —t~ ) + ik (x~ —x~)]q, j,da."db" (4.44)

3. Self-action

We now come to an issue that distinguishes the quan-
tum treatment of direct interparticle action from its clas-
sical treatment. Suppose self-action were included in the
classical theory. This would mean the addition of an in-
tegral of the following form for each typical charge a in
the action formula (1.6):

2
——e 8(s~~)g, l, do, 'do, ". (4.45)

We interpret the various terms in E[a, b; a', b'] as fol-

lows. For t~ ) t~, the positive terms in the curly brack-
ets contribute to a downward transition of particle 6 and
an upward transition of particle a, and vice versa for) t~. The negative terms contribute to downward
transitions of both a and b Thus, .(4.44) describes ab-
sorption and stimulated emission. In general we may
consider these phenomena as energy exchanges between
particles of a pair and between the pair and the surround-
ings. Since the coeKcient in front of all terms is the same,
the probabilities for these processes are also the same.

Here both points A and A lie on the same path o,(t).
Since all classical paths are timelike, we have b(s2 -) = 0

for A g A. That is, for two distinct points on the path
the segment AA is timelike and so the delta function van-
ishes. Hence the term adds nothing to the action except
in the case A = A. It turns out, however, that this addi-
tion leads to the notorious infinities of electrodynamics.

In quantum electrodynamics, the situation is difI'erent
since the paths here are made up of both I'+ and I'
segments, i.e. , they can turn backwards in time. Thus we
can find distinct points A and A on the same path a(t)
such that 8 - = 0. In other words segments on which
these points lie do interact. Can we therefore retain the
rule that there is no self-'interaction of a typical path?
This would mean that two segments with points on one
connectible to points on the other by null rays still do
not interact if they belong to the same path.

Such a rule would be difFicult to implement in practice
since it would require knowing beforehand the full history
of the path or paths to which the segments belong to
decide whether they interact or not. In any case the
phenomenon of positronium annihilation tells us that the
two segments do interact. Thus it seems necessary to add
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the self-action term (4.45) to the action and limit the lack
of self-interaction to the proviso A g A.

Including the self-action therefore, we need to con-
sider the influence functional for the case a = b. Hoyle

I

and Narlikar (1971) have shown that in such a situa-
tion the essential contributions are from the combina-
tions (a, a'), (a, a), and (a', a'). The resulting expression
ls

F]a, a'] = exp(te de(ss, s)st;sde"des — f
tA) t~l

2
b+ (s' „)g,),-da'da" +—

2
(s'„, -, )g;ada" da' (4.46)

or, in terms of Fourier integrals it becomes

F]a, a'] = exp (e /4x ) fdBf KdKI —ff exp iK(ts —ts ) +ik (xs —xs)st;sd ~d e"e '

exp xK(t~ —t~) + xk. (x~ —x~)q;kda*da"

exp[i%(t&, —t&, ) +ik. (x&, —xdt, )]g;),da"da'" (4.47)

This is the same result as that obtained in Sec. III.
The first term in the curly bracket gives the spontaneous
transitions while the second and third terms contribute
the radiative correction effects. In principle a factor of
this form should exist for all particles a, b, c, . . . of the
system. We will consider the radiative corrections in the
next section.

4. Interaction with vacuum loops

The expression (4.28) is still incomplete because we
have not included the interactions of paths with loops.

I

I

As discussed in IV.C.2. the loops arise in the theory
by the requirement of antisymmetrization and thus will
influence any phenomenon of interaction between "real"
particles.

This generalization is straightforward, given the earlier
discussion of the influence functional for paths of parti-
cles. As shown by Hoyle and Narlikar (1971) the loops
by themselves do not affect the probability calculation
but the interactive term between a loop and a particle
path does. The influence functional for a loop-particle
interaction is given by

F]a, l; ', ]=aelxp iee
l f

t&1 &tL,

4+(sst)stsde dl, " — f'*f 4 (sts)st;sda d!s, "
tl. ) t~l

4+( , ) t dsatdxl' s—sf f 4 *( st)st;sd 'dst'se,

b+ „'~ g, I,da'dl" + (a~2, 1, )q, I, da'*dl'" (4.48)

As we shall see, this type of interaction produces the ef-
fects normally ascribed to "vacuum polarization" in field
theory.

With this result the action-at-a-distance quantum elec-
trodynamics can be said to have reached the same level
of attainment as the conventional quantum field theo-
retic electrodynamics. Although we have used (through-
out this section) the language of flat spacetime, we have
done so because electrodynamics is conformally invariant

and our cosmological models are conformally fat. Thus
our arguments work in an expanding universe with the
correct past and future boundary -conditions, i.e., with
the response required by the condition (4.34). However,
it is cosmology that brings out the real differences be-
tween the two approaches when we consider the so-called
radiative corrections and the renormalization program.
We turn to these issues next.
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V. CQSMOI OGICAL RESPONSE: SOME IMPLICATIONS (5 4)

A. Radiative corrections

1. The electron self-energy correction

2
——e h+ (s )rl;ada'd-a" (5.1)

describing the action of a charge a on itself. Note that
the delta function b+ instead of 6 appears in Eq. (5.1)
after we include the response of the Universe.

Any computation of a quantum electrodynamic cross
section using Eq. (5.1) leads to a divergent result if one
uses it literally as given. However, action at a distance
requires a lower cutoff of the kind

We now examine the so-called self-energy correction
due to the radiative processes in action-at-a-distance
electrodynamics. Recall that the classical self-energy
problem is solved in this theory by the use of advanced re-
action from the rest of the Universe. The problem arises
in quantum Beld theory from the ultraviolet divergence,
i.e., from the degrees of freedom of the electromagnetic
Beld of very high frequency. In the action-at-a-distance
version, the self-energy problem in principle appears from
the identification of the two legs A. , A, of the delta func-
tion in the interaction

With a finite cutoff the calculation of the bare and ob-
served masses of the electric charge can be performed
using the usual methods of the renormalization program.
(See Hoyle and Narlikar, 1971, for details. )

The cutoff on A: at the high frequency and given by
(5.3) works out to 10 sec for the atomic and cos-
mological parameters described above. This cutoff may
vary from one microscopic process to another; it also is
linked with the properties of the cosmic absorber. How-
ever, the reasoning given above tells us that for every
microscopic process in electrodynamics a cutoff exists.

The purely local approach to @ED demands Lorentz
invariance in every operation that may be performed.
Our method, on the other hand, picks out a speciBc lo-
cal reference frame, viz. the so-called cosmological rest
frame, to define the response of the Universe. Thus
Lorentz invariance is manifestly not present, although
one can use the Lorentz transformation to describe any
process of @ED in a frame difFerent from the cosmological
rest frame.

Choose the cosmological rest frame in which, by the
arguments of the preceding section, all I"ourier integrals
in the computations of the infiuence functional have a
high frequency cutoff at A:, say. With c = 1, h = 1,
this cutoff corresponds to a restriction in time coordinate

(5 2) ~t& —tz~ & k-.'„. (5.5)

with the cutoff vector e' having length e small compared
to the Compton wavelength of the mass m . Hoyle and
Narlikar (1971) had conjectured that if a more com-

plete theory includes classical gravity then a natural
cutoff would be the Schwarzschild radius of the charge,
2Gm /c . Later Padmanabhan (1985) showed that in a
quantum gravity context the cutoff is the Planck length
(Gh/c') '/'.

Neither of these cutoffs, however, reQect the global na-
ture of the problem, i.e., the fact that any local quan-
tum measurement is subject to the interference of the re-
sponse of the universe. A clue to this type of cutoff was
provided by our earlier discussion of Sec. III.E. There we

found that because of the event horizon in the future ab-
sorber the response is limited to frequencies up to those
satisfying the inequality

3e' (k
m b, =m~h 1+ ln

27( ( mt' )
(5.6)

Notice that a similar formula comes from quantum field
theory but there the cutoff is a purely abstract quantity
and so no numerical significance is attached to the mass
difference

Zm = m.b, —m, h. (5.7)

We will shortly specify k; for the time being k
remains a small quantity akin to e used in Eq. (5.2).

Using the derivation of Hoyle and Narlikar [1971: see
their Eq. (146)] therein we find that in the cosmoIogi
cal rest frame the observed mass m b, is related to the
theoretical mass mth of the electron by the relation

k ( u),fr/IIT, (5.3)

where' T is the time duration of the measurement. This
was the limit in the spontaneous transition problem.
However, as we saw in Sec. IV the limit will appear in the
more general inQuence functional calculated in formulas
(4.44) and (4.47). This limit to high frequencies in the
momentum space translates to a lower limit in the con-
figuration space. Identifying the lower limit ~ in formula
(5.2) with that in Eq. (5.3) we get A: 10 sec (5.8)

In the present theory k „is related to physical parame-
ters and as a result it is possible to estimate it and Am,
which we proceed to do now.

The upper limit on k is given by (5.3) in which we

have u,g ~ 80 sec, H 3 x 10 sec, and T a time
scale large compared to the characteristic time for the
process —in this case the free motion of the electron. We
may take T 5/mc 10 sec. Thus we have
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Using these values, (5.6) and (5.7) give in dimensionless
form

which in turn corresponds to the current

3e
ln(10 ) 0.15.2' Ac

(5.9)

j'(1) = —ClqA'(1)4'
= ie Tr p'K+ 13 3 K+ 31 dv3. 513

In fact, with T h/mc2, (5.9) expressed in symbols is

3n (ar.g l
2~ ), II )' (5.10)

where o. is the fine-structure constant.
Two comments are needed to elaborate the above con-

clusion. First, (5.10) shows clearly the cosmological input
to the correction term at which no purely local attempt
to resolve the divergence problem will arrive. Second,
the correction has been obtained in the cosmological rest
frame, and so the statement is not strictly Lorentz in-
variant. This in our view is an unavoidable conclusion
echoing the first comment that only a global theory can
lead to the resolution of the divergence problem. In this
context we recall Dirac's intuitive perception when he
wrote:

"With a cut off we eli-minate at once all dif
ficulties about divergent integrals which have
been plaguing theoretical physics for decades
These difhculties arise only because people
mant to have strict Iorentz invariance in an
imperfect theory. In doing so they are aiming
for something which may very well be impos
sible" [

—Dirac, 1969].

We would agree with the above sentiment with one
modification: replace the adjective "imperfect" by "in-
complete" to underscore the one crucial element missed
out in Beld theory, viz. the response of the Universe.

2. Charge renormalization

-(-*')(-*')ff
x Tr[p'K+(2; 3) P (3)K+(3;2)]dr, dr2dr3 (5»)

with the integrations with respect to vq, w2, and v3 being
over the slab 0 & t & T. The scattering is the same as
that produced by a potential

4'(1) = ~e' ff b (s,*,)Tr(p'K (2; 3) s (3)

x K+(3; 2)]dr2drs, (5.12)

The "renormalization" of electric charge occurs in the
present theory through the interaction of charged closed
loops as intermediaries between the interaction of any
two charges. Suppose an external potential B; scatters
a particle from state ui to u2 in the presence of a loop.
The loop-path inHuence functional then leads to the am-
plitude

The evaluation of j'(1) is given in detail by Hoyle and
Narlikar (1971) and we simply quote the result which is
cutoK dependent:

2ej,(1) = ln(me) 1;(1), (5.14)

where m is the mass of the charge. The e here arises
again from the lower limit on the separation of the two
legs of the delta function and its interpretation in terms of
the upper limit on frequencies of the absorber response
is as given by Eqs. (5.3) and (5.4). Thus in terms of
the cosmological parameters of the absorber we get the
charge modification Ae as

2e' (a).s l
ln

3~Ac (0) (5.15)

". . . this so called good theory (QED) . . . in
volves neglecting infinities, neglecting them in
an arbitrary may. This is not sensible math-
ematics. Sensible mathematics involves ne-
glecting a quantity mhen it is small —not ne-
glecting itjust because it is infinitely great and
you do not want it" [

—Dirac, 1978].

The proposed remedy in the present approach solves
this outstanding difFiculty at a price that the theoretical
physicist trained at viewing the problem in a purely lo-
cal way will Bnd it difFicult to appreciate. Yet, the merit
of the solution presented here should induce him to take

The result is that closed loops efFectively lower the the-
oretical (or "bare" ) value of the electric charge by some
0.04 fraction of its original value.

We may briefly comment on the relationship (5.4) fur-
ther as follows. For A and A separated by smaller than e

the corresponding frequencies in the infIuence functional
are too high for the absorber to react and inBuence the
local experiment. This results in slight modiBcations of
the "bare" values of mass and charge of a typical par-
ticle, for any experiment measures these values not for
isolated (i.e. , bare) charges but for charges in continuous
interaction with the universe.

The renormalization program in the quantum field the-
ory of charged particles has merit in that it gives an un-
ambiguous way of handling infinite integrals which are
only logarithmically divergent. It has been felt that the
actual values of these integrals do not contribute to ob-
servable quantities and as such the success of the program
is judged by how the residuals left after removing the in-
finite integrals pass the observational tests. However, as
Dirac observed:
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into account the missing link, namely the response of the
Universe. It is this link that forces us to consider cosmo-
logical boundary conditions for seemingly local problems.

B. Response calculation using the S-matrix formulation

The path integral approach of Feynman provides a nat-
ural way of quantizing the %'heeler-Feynman action-at-a-
distance electrodynamics, as is clear from the discussion
of Secs. III and IV. Nevertheless the path integral ap-
proach, especially for relativistic particles, is a relatively
unfamiliar one and one would like to see some formal
contact with the methods of quantum field theory. This
was provided by Davies in a series of papers (see, for ex-
ample, Davies, 1970, 1971, and 1972a). We give a brief
account of this work below.

In the first of these papers Davies discussed the ana-
log of the work of Sec. III, i.e. , the formulation of the
quantum response of the Universe that leads to the spon-
taneous transition of the atomic electron. Starting with
the Lagrangian for the typical ath particle

L = —e ) eb b(s~~)g, ada'do,
bga

and a direct particle potential due to source 6

(5.16)

AI l(X) = eg h(sx~)g;gdb",

Davies showed how to construct an S-matrix perturba-
tion expansion

)-(—1)
nf

x Z(X„)]de.i . dr„.

P[C(xi)C(X2)

Here P denotes a time-ordered product as usual, but
the Z(x) function cannot be the formal product of the
current and a potential operator since the p~ agential in

Eq. (5.17) is not a vector field in its oven rif'it. Instead
it is possible to use for 2 the basic first-order interaction

~(X) = — &l.i'(X)~(",)&l'l" (X')&,„d d '. (5.19)

Davies showed that if one uses the %'heeler-Feynman
theory and the perfect absorber condition developed in
Secs. II and III above, then one can recover the usual
quantum rules for direct particle fields as defined by
Eq. (1.9):

(o~a, (x)x„(x')~0) = —zD+(x, x') g;„, (5.2o)

(0~P [A; (X)Ak (X')]
~
0) = i Dp (X,X')q;g. (5.2—1)

Note that the D+ and D~ functions used here have
their usual de6nitions in field. theory but here they have

not been used to formulate the quantum rules of A, (x)
treated as operators. Instead they were deduced by
Davies from the application of the response of the Uni-
verse.

In subsequent papers Davies (1971, 1972a) generalized
the formulation to give an exact expression rather than a
perturbation expansion for S. In particular, in the first
of the two papers he showed that

S=Pexp —i ZX d x

=P exp —z &,"(x)D (x, x')

x ji' (W') q*"dv d7'J (5.22)

C. Experimental search for advanced potentials

Assuming the above approach to electrodynamics to be
valid, it follows that the nature of the accepted cosmologi-
cal model should be consistent with the local experiments
of electrodynamics. In particular, if the cosmological re-
sponse is not such as to give pure retarded solutions, then
it may be possible to detect advanced effects. There have
been attempts to look for small advanced effects in local
radiation experiments, although their interpretation it-
self is shrouded in controversy.

As we saw in earlier sections, no standard big bang
cosmology satisfies the absorber condition to give unam-
biguous pure retarded solutions. It follows therefore that
if one of these cosmologies is right then the pure retarded
solution is untenable. Can it be that the incompleteness
of future absorption would show itself through the pres-
ence of small fractions of advanced effects in local exper-
iments'?

Partridge (1973) attempted to detect such an effect in
the radiation of a microwave source as it alternately ra-
diated into free space and a local absorber. Partridge ar-
gued that advanced potentials lead to power gain rather
than power loss in the source. Hence if a tiny fraction

gives a complete description of quantum electrodynam-
ics for processes which involve only virtual photons. Note
that in the summation over all particle pairs in Eq. (5.22)
the self-action is also included as was done by Hoyle and
Narlikar (1971). The expression (5.22) is analogous to
that derived by Peynman (1950) by eliminating all pho-
tons from the description of electrodynamics.

In the second paper Davies discussed the role of real
photons. The question is whether there are any real pho-
tons at all. As Feynman put it all photons if observed
over a suKciently long time scale are virtual. Thus if
the universe is a light tight box that absorbs all photons
emitted within it then the above formalism would de-
scribe all processes that apparently involve the emission
and absorption of "real" photons. The condition is basi-
cally the same as that obtained by Hoyle and Narlikar,
viz. that the universe should have a future absorber that
absorbs coInpletely all photons of positive frequencies.
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of radiation is via advanced potentials, the power drain
from the source would be less than in the pure retarded
case.

Partridge set up an arrangement in which radiation
was blocked by a local absorber in one direction and was
allowed to move freely in another. The argument was
that the local absorber will ensure pure retarded efFects
whereas the radiation into free space would travel long
distances and through an incompletely absorbing uni-
verse. A switching arrangement allowed these possibil-
ities alternately. Within the accuracy of the experiment
(estimated at 1 part in 10 ) there was no difFerence in
the two cases. Thus Partridge claimed to have found no
evidence of advanced efFects.

Subsequently, Heron and Pegg (1974) argued that Par-
tridge's use of a static absorber would inevitably lead to
a null result. Instead what they proposed was an exper-
iment with a time asymmetric chopper absorber to alter
the boundary conditions. This would allow them to alter
the ratio of advanced to retarded components, leading to
a possible detection of the former.

However, Davies (1975) has criticized both the above
approaches on the grounds that with proper inclusion of
thermodynamics, attempts like these are bound to give
null results. The objection raised by Davies goes in fact
deeper than the specific issues relating to the proposed
experiments. Davies has argued that one cannot bypass
thermodynamics as proposed by Hogarth, Hoyle, and
Narlikar and that ultimately the thermodynamic asym-
metry like that in the Boltzmann H theorem will have to
be included in any realistic discussion of electrodynamic
time asymmetry. In other words, Davies was reverting
to the explanation of time asymmetry given by Wheeler
and Feynman (1945) referred to in Sec. III.

While this could be a possible line of argument it
misses the entire spirit of the action-at-a-distance theory.
First, it postulates ad hoc asymmetrical initial conditions
which are basic to the H theorem. Second, once one de-
cides to work within the action-at-a-distance framework
the nonlocality of the problem forces one to take cog-
nizance of the large scale structure of the universe, and
the cosmological considerations of Secs. III—V become
relevant and unavoidable. The self-consistent mixture
of advanced and retarded potentials is determined by in-
cluding the response of the universe. Finally, rather than
use the statistical laws of thermodynamics as fundamen-
tal laws, attempts should be made to understand them
as a consequence of other more fundamental arrows of
time like electrodynamics and cosmology.

Another aspect of the Partridge-type experiment re-
lates to the deeper question of a relationship of ther-
modynamic and electrodynamic arrows to the expand-
ing and contracting phases of a time-symmetric universe,
such as the Friedmann model with A; = +1. Do these
time arrows reverse when the universe contracts? This
question, so long as one sticks to the Wheeler-Feynman
electrodynamics, is not uniquely answered, as we saw in
Sec. II.C. Recently Gell-Mann and Hartle (1991) have
discussed this problem in a difFerent way. They inves-

tigate a way in which the rules of quantum mechanics
might be adapted to impose a time symmetry on the
boundary conditions. Thus when the universe enters the
contracting phase, these microscopic degrees of freedom
of the universe conspire to reverse the time-asymmetric
processes. In a reanalysis of the Partridge experiment
Davies and Twamley (1993)argue that its null result goes
against the Gell-Mann Hartle model, but suggest that a
more stringent test would be to repeat the Partridge ex-
periment with a laser rather than microwave antenna.
This is because the universe is apparently transparent
out to great distances at the 0Hz frequencies and to in-
clude i'ts absorptive efFects along the future light cone in
a more significant way much higher frequencies should be
used.

Vl. CONCLUSION

The above remarks motivate an important extension
of the action-at-a-distance concept to all basic interac-
tions of physics, so that the thermodynamics of macro-
scopic systems can be understood as a consequence of the
largest scale time asymmetry, viz. the expansion of the
universe. Thus one needs to go deeper into the controver-
sial issue (see Gold, 1968, for a discussion) as to whether
in a contracting universe thermodynamics goes in the re-
verse direction. There are other compelling reasons for
seeking such an extension, since, so far as electrodynam-
ics is concerned, action at a distance has now demon-
strated the following advantages over the field theoretic
description:

(1) The choice of retarded solutions is not ad hoc as in
Geld theory but dictated by the time asymmetry of the
universe.

(2) There is no paradox involving infinities due to self-
action in the classical theory.

(3) The theory is able to account for all classical as well
as quantum electrodynamics without the extra degrees of
freedom vested in free Gelds, i.e., it is more economical
in its postulates.

(4) The cosmological boundary conditions provide the
cutofF at high frequencies and thereby eliminate the diver-
gences that normally plague quantum electrodynamics.

(5) The concept of the response of the universe pro-
vides a powerful tool for limiting viable cosmological
models.

These advantages are sufhcient to motivate the gener-
alization of action at a distance to other areas of physics.

There is one further hint of the possible role of the re-
sponse of the universe in local phenomena, a role that
takes us beyond electrodynamics. The discussions of
Secs. III—V tell us that it is not proper to talk of a prob-
ability amplitude for a local microscopic system. The
correct description of the physical behavior of the sys-
tem follows from the probability calculation that includes
the response of the universe. Thus one is dealing with a
"square of the amplitude" type of expression rather than
the amplitude itself.
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This may explain the mystery that surrounds such
epistemological issues like the collapse of the urave func
tion. What is missing from the usual discussion of the
problem is the response of the universe. The wave-
function collapse represents the Bnal course of action
taken by the system consistent with the response of the
universe. We suggest this idea as a way of understand-
ing many other conceptual issues of quantum mechan-
ics. It may well be that the real nonlocal "hidden vari-
ables" are contained. in the response of the universe. For
a detailed discussion of this idea see Hoyle (1982) and
Narlikar (1993b).

What has been the progress towards extending the
action-at-a-distance formulation to other interactions?
In the late sixties Narlikar (1968) showed how to con-
struct an action-at-a-distance counterpart for a field the-
ory of arbitrary spin having a quadratic Lagrangian and
linear field equations. Such a formulation will natu-
rally have an absorber theory" similar to the Wheeler-
Feynman theory. Earlier Narlikar (1962) had discussed
an absorber theory involving neutrinos on lines similar to
virtual photons assuming that the neutrinos travel with
the speed of light and mediate in weak interactions.

Hoyle and Narlikar (1964b, 1966, and 1974) have
shown how to obtain a theory of inertia and. gravity by a
natural extension to scalar conformally invariant theory.
The theory reduces in the many particle approximation
to general relativity with the additional demonstration
that the sign of the gravitational constant has to be pos-
itive. The theory is Machian in origin in the sense that it
relates the inertia of matter to the large scale structure
of the universe.

More recently, Hoyle, Burbidge, and Narlikar (1995)
have further generalized the formulation to describe the
creation of matter, including the deduction of the cosmo-
logical constant. Here the creation is through the basic
unit of Planck mass (hc/G) I which subsequently decays
through a series of high energy physics interactions to
baryonic matter —a process yet to be determined by the
particle physicists. This may very well involve a "grand
unification" but through action at a distance instead of
Belds.

Perhaps the stiQ'est resistance to the concept of action
at a distance would come today not from microphysics
but from cosmology. As we found earlier, all the popular
big bang models fail to meet the appropriate temporal
boundary conditions while the steady-state model satis-
Bes them. However, the latter Inodel has several difFicul-
ties in explaining the observed large scale features of the
universe. (So does the big bang idea; but it has gained
acceptance because of the belief that only it can provide
an explanation for the microwave background and the
abundances of light nuclei, which had baReR the steady-
state model. )

Recently, however, Hoyle, 8urbidge, and Narlikar
(1993, 1994a, 1994b) have produced the so-called "quasi-
steady-state cosmology" (QSSC) that appears to circum-
vent the difFiculties faced by the steady-state model. This
model combines some features of the big bang model with

some of the steady-state model. It is thus able to explain
observed features like the microwave background, abun-
dances of light nuclei, the redshift magnitude relation for
galaxies, radio source counts, angular size redshift rela-
tion, etc. , that are normally claimed as successes of the
big bang cosmology. It also explains features which the
big bang cosmology finds hard to accommodate like the
age distribution of galaxies, baryonic dark matter, rela-
tionship to high energy astrophysics, and above all the
explanation of the primary creation of matter within a
framework that respects the law of conservation of mat-
ter and energy.

Although not claimed as "the cosmology" by its au-
thors, the QSSC therefore is indicative of the kind of
cosmology that may be required to accommodate the
growing list of extragalactic phenomena being discov-
ered. For the present work, it has the merit of having
the right kind of cosmological response. We therefore
end this article with the hope that in the growing inter-
action between fundamental physics and cosmology the
action-at-a-distance approach may have a lot to oKer to
both the disciplines.
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