AIAA 2002-0493

Plasma-Assisted Combustion.

Institute for High Temperature RAS (IVTAN),
The Johns Hopkins University, APL, Laurel MD.

40th Aerospace Sciences Meeting & Exhibit
14–17 January 2002
Reno, Nevada
Plasma-Assisted Combustion.

Van Wie D.M**

Institute for High Temperature RAS/ MTC*,
The Johns Hopkins University, APL, Laurel MD**

Introduction.

Plasma assisted combustion (PAC) in a cold subsonic and supersonic airflow was studied in our previous works [1-3]. Present work is devoted to continuation of PAC study in a hot airflow. The experimental studies were carried out in a hot wind tunnel (HWT). The comparative analysis of the different types of plasma formations (PF) used in PAC experiment is considered in this work, namely

- HF streamer plasmoid,
- PF created by pulse repetitive discharge,
- PF created by combined discharge.

The PF's characteristics in a hot airflow are studied. The dependencies of the PF parameters on airflow parameters, gas temperature, types of testing gases were obtained. Some of the new experimental results obtained in this HWT are considered in this work, namely:

- Stimulation of propane-air mixing by a streamer HF discharge, (advanced air-fuel mixing).
- Small characteristic ignition and combustion times (τ1,2) in HF plasma assisted combustion experiment.
- Parameters of a single HF streamer in a hot airflow.

Combined discharge. HF+HF. PAC stimulated by a streamer HF discharge was studied in [1-3]. In the present experiments it was revealed that Tesla’s coil generator could create a number of HF plasmoids simultaneously, fig.1. Note that only one Tesla’s coil was active and has galvanic connection with the power supply. Other PGs were passive ones and had the capacity connection with active PG. Maximal number of HF plasmoids was 8 in our experiment. Simultaneous operation of two HF PGs is shown in fig.1. One of them is active command PG and second PG is passive one. It was revealed that these PGs could operate consecutively. The operation time of the separate PG was about 100 mcs (repetitive operation frequency F* was about 5 kHz).

The scheme of the experimental set up (Hot Wind Tunnel, HWT) is shown in Fig.2. This installation consists of

- Arc discharge heater (1),
- Supersonic airflow channel (5),
- Vortex separation zone for fuel mixing (9),
- HF pre-heater (4),
- HF discharge igniter (6),

This set up consists of two quartz tubes:

- Small tube (5) with inner diameter 17 mm and length ~400 mm,
- Large tube (7) with inner diameter 40 mm and length ~1000 mm.

First HF PG was used for airflow heating and excitation (radical generation in airflow). Second HF PG was used for ignition and combustion control. The possible propane injection locations are the followings:

- Through the thin tube in the HWT between small and large tubes (9) and near the nozzle (3, main injection location),
- Through the thin tube inside of the HF hot electrodes (additional injection location).

Namely utilization of the quartz tubes in our experiment helps us to use optical diagnostic instrumentation to study plasma-assisted combustion.
Main technical characteristics of the HWT are shown in Tabl.1. The airflow rotated in the nozzle in some experiments. The homogeneous arc discharge was created in the nozzle in this case.

Main experimental results.
1. The single HF streamer parameters were measured by the different diagnostic methods. The characteristic plasma parameters of a single HF streamer are shown in tabl.2, [1-3]. One can conclude that the HF streamer is the non-equilibrium plasma formation. It has a very high-energy storage. So, it can stimulate the plasma chemical reactions and radical generation in a fuel-air mixture.

2. There is the optimal location of two HF PGs in HWT. The optimal distance L between two HF electrodes is determined by the HF plasmoid transit time $T^* = (F^*)^{-1} = L/V_d$ (where V_d - transit plasmoid velocity). The PAC near second HF electrode started with first plasmoid arriving (generated by first HF PG) simultaneously in this case. This regime was named resonance one. The optimal value L was about 10-30 cm in our experiment.

3. Small fuel mass injection into airflow through the first electrode (very poor air- fuel mixture) increases the airflow pre-heating considerably. The maximal gas temperature T_g of gas flow near the first electrode was about $T_g = 800-900K$ in this case ($M = 0.6$; $P_{st} = 1$ Bar).

4. Very active PAC was recorded near the second HF electrode at previous gas pre-heating and excitation near the first HF electrode, fig.4. The flame color was very bright blue in this regime. Note that the flame color was yellow-red at single HF PG operation ($M = 0.6$; $P_{st} = 1$ Bar) only. In the combined HF discharge the flame length was two times less than it was in the case with the single HF PG. The characteristic ignition time τ_i and combustion τ_c time were less than $\tau_{i,c} \approx 20 \text{ mcs}$ in the combined HF discharge.

5. The gas temperature T_g was about $T_g = 1200-1400K$ in the combustion region in a combined HF discharge. Note that the gas temperature was about $T_g \approx 900K$ in the combustion region in the single HF discharge. Note that the mean HF power was the same one (about 2 kW) in these two considered variants. So, the combined discharge created by two HF PGs is more effective one than the single HF discharge for plasma-assisted combustion.

6. HF plasmoid with very large streamers (50-100 cm length) was created in airflow ($M= 0.4-1.2$) by a new powerful HF generator (mean power about 18 kW), fig.2. This longitudinal HF streamer discharge (about 100 cm) was created in supersonic and subsonic airflows in a quartz tube and a metal channel also. We hope that the PAC of a hydrocarbon fuel (such as benzene, oil and others) stimulated by this longitudinal HF discharge will be possible in a supersonic airflow at the parameters closed to the scram jet ones (due to large HF streamer length, high gas temperature and high excitation level in this discharge).

7. It was revealed that fuel could penetrate deeply in airflow through HF streamer channels [1-3]. One can see that the longitudinal HF streamer rotates in airflow, fig.2. Estimation gives the rotation velocity about 10^3-10^5 c^{-1}. It was revealed that fuel is transported through this curved HF streamer, fig.2. Rotation acceleration of this fuel is very high, more than
1. The stable PAC was obtained in subsonic airflow (M<0.8, P_{st}~1 Bar, T_0=300K).
2. The selective radical generation was obtained at the different PRD operation parameters. One can see the different luminescence color of the excited fuel-airflow mixing in PAC experiment, fig.5. Note that the selective radical generation (in the wide species range) was possible in this combined discharge namely.
3. Very homogeneous PAC was created in this combined discharge (HF+ PRD).
4. There is the critical pulse power (more than 10 kW) of the thermal blocking of airflow in a quartz tube.
5. There is the negative electromagnetic interference between HF PG and PRD PG. So, it is need to overcome these difficulties by the careful shielding of these PGs.

Main conclusion of this work. The combined discharge is the optimal one for plasma-assisted combustion namely. The optimal radical generation in a fuel-airflow mixture was obtained by this discharge namely.

Acknowledgements.
Financial support of the European Office of Research and Development (EOARD) under Contract Work 2127P and the John Hopkins University, APL under Contract Work 785461 are gratefully acknowledged.

References.
Tabl.1. Technical parameters of the HWT
- Airflow mass flux < 20 g/s,
- Propane mass flux < 1 g/s,
- Supersonic airflow parameters in small tube $M < 2$, $P_s < 1$ Bar
- Gas temperature in arc heater $T_o < 2000$K,
- HF power of the igniter $N_d < 2$ kW
- Mean power of PG-jet $N_d < 3$ kW

Tabl.2. HF streamer parameters
- Electron concentration
 - Inside streamer $N_e \sim 10^{15}$ cm3
 - Between streamer $N_e \sim 10^{12}$ - 10^{13} cm3
- Estimated electron temperature $T_e \sim 1$-10 eV
- Gas temperature $T_g \sim 1000$-1500K,
- Experimental streamer length $L_{str.exp} \sim 50$ mm.
- Velocity of HF streamer propagation $V_{str} \sim 10^3$ - 10^5 m/s.
- Generation frequency 2-20 kHz
- Life time $T_{str} \sim 50$-100 mcs.
- Specific energy storage ~ 1-10 J/cm3

Tabl.3. PRD PG parameters.
- Pulse duration 1-4ms
- Current amplitude < 100 Amp
- Repetitive frequency < 100 Hz
- Pulse power < 100 kW

Fig.1. Simultaneous operation of the active Tesla's coil and passive one.

American Institute of Aeronautics and Astronautics
Fig. 2. Rotation of large HF streamer in subsonic airflow ($M \approx 0.4$, $P_{st} = 1$ Bar).
Sphere diameter $= 5$ cm. $N_i \approx 10$ kW

Fig. 3. Experimental set up HWT with two HF PG.

American Institute of Aeronautics and Astronautics
Fig. 4. Simultaneous operation of two HF PG in HWT (M=0.6, Pst~ 1 Bar). Left PG – active one, right PG - passive one.

Fig. 5. Combined discharge (PRD+ HF) in the HWT.