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The interdependent problems of determining the current density field and the electron temperature and 
number density profiles in nonequilibrium Jx B devices are formulated realistically, and solved numerically. 
The two-dimensional formulation includes the important effects of thermal and concentration diffusion, 
thermal and velocity boundary layers, and finite reaction rates on the electrical behavior of crossed-field 
devices, and allows each effect to be studied separately. As a result, this study predicts and interprets the 
asymmetry of the current distribution that has often been reported in experimental studies. Computations 
in potassium-seeded nitrogen plasmas have shown that streamwise nonuniformities can be very pronounced 
both in the core and in the electrode boundary regions of high-current density devices. In the limiting case 
of instantaneous reaction rates (ionization equilibrium at the electron temperature) and instantaneous 
energy relaxation, current lines in the core display a striking increase in slope throughout the narrow region 
between the insulator segments, where they become almost perpendicular to the flow direction and much 
denser than in the remaining part of the core. Under these conditions, there is no evidence of current 
"shorting" through the boundary layer, although the T, distribution is such that high-luminosity regions 
appear over the electrodes, particularly over the cathode. The general and flexible methods developed in 
this study allow realistic evaluation of suggested designs under various operating conditions. 

Important physical mechanisms that influence the 
electrical behavior and design parameters of crossed-
field devices (accelerators and generators) include 
thermal diffusion, the gasdynamic boundary layers 
on the walls, and relaxation effects due to finite re-
action and energy transfer rates. 

The problem of determining the current density 
field J (x, y) in a J x B geometry with segmented elec-
trodes, can be formulated in a general and realistic 
mathematical model that includes the effect of these 
physical mechanisms. Using the conventional nota-
tion (x is the direction of the plasma velocity U, y is 
the direction of the applied electric field E, z is the 
direction of the applied magnetic induction B), we 
find (see Appendix) that the current streamfunction 
\lr(x, y) satisfies the nonlinear! differential equation 

V2\lr+ Ma\lr /ax+ Na\lr /ay=p, (1) 
where 

M = (u /f) [(a/ax) (E/u) - (a/ay) ({3/u)] (la) 

N= (u/e) [(a/ay) (E/u) + (a/ax) ({3/u)] (1b) 

P= (u/e) (BV· U -aKy/ax+aKx/ay), (lc) 

while K is an "effective" electric field due to electron 
temperature and pressure gradients, and defined by2 

K= _[O(llVT.+O(2)VT. XB+O(3l(VT. xB) xB] 

_[,B/Ilvp,+{3.(2lVp. xB]. (2) 

The coefficients OW and {3.w have been defined in Ref. 2. 
The scalar conductivity u and the parameters {3 and e 
are associated with the coefficients of Ohm's law, which 

1 Equation (1) is nonlinear because M, N, and P are strong 
functions of the electron temperature which in nonequilibrium 
devices is coupled to the current density J through the electron 
energy equation. 

2 S. T. Demetriades and G. S. Argyropoulos, Phys. Fluids 9, 
2136 (1966). 

has the form 

E+ U xB+K= (1/u)J+x] xB-,p(J xB) xB. (3) 
Specifically, in the notation of Ref. 2, {3=uxB and 
e= 1 +u,pB2. The form of Ohm's law used in this work 
is the one developed in Ref. 2; it corresponds to the 
second Chapman-Enskog approximation, includes ion 
currents and the effect of temperature and pressure 
gradients, and is valid for multicomponent, noniso-
thermal plasmas. (In theftrst approximation, (3 reduces 
to the commonly used Hall parameter WT, while ,p 
reduces2 to the "ion-slip" coefficient. In the second 
approximation there is an electronic contribution to ,p, 
which is usually more important than the ion-slip 
term.) Our formulation shows that the parameter {3/E 
appears in place of WT of the first-order theories. In the 
second approximation, {3/e can be 10%-20% lower 
than WT. 

We see that Ohm's law and the streamfunction equa-
tion depend upon gasdynamic variables both explicitly 
(plasma velocity U, temperature and pressure gradi-
ents) and implicitly (temperature and pressure de-
pendence of the coefficients). Because of this depen-
dence, the current distribution is coupled to the gas-
dynamic problem (i.e., the problem of determining 
the pressure, temperature, and velocity distributions 
in the device). The gas velocity and the gas temper-
ature profiles in the electrode boundary regions can 
have a significant influence upon the current distribu-
tion. We have therefore included them in the formula-
tion. This does not mean, however, that we have solved 
the combined electrical-and-gasdynamic problem. In-
stead, we obtain the best available estimates and 
measurements of the gas velocity and temperature 
profiles for a given case, and use them as inputs for the 
solution of the "electrical" problem. This approach is 
justified by the fact that neither the gas temperature 
nor the gas velocity can vary appreciably in the flow 
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FIG. 1. Current streamlines by "constant property" calculation. 
Hall parameter f3/.=2.6. 

direction within one electrode-pair region, and achieves 
our objective of evaluating the influence of these 
profiles on the electrical behavior, but is subject, of 
course, to the accuracy by which these profiles are 
estimated or measured. 

Finally, the coefficients of Ohm's law are strong 
functions of the electron temperature and the plasma 
composition, the variations of which in nonequilibrium 
devices are inherently connected to the current dis-
tribution through the electron energy equation. Con-
sequently, it is not possible in nonequilibrium J x B 
devices to uncouple the current distribution from the 
electron temperature and number density fields; it is neces-
sary to solve for all these distributions simultaneously. 

The electron energy equation has been used in the 
present study in its steady-state form, as a local balance 
between electron heating due to Ohmic dissipation 
and energy transfer due to collisions. It takes account 
of the heating or cooling of electrons due to thermal 
diffusion and, for the term that describes the energy 
transfer due to collisions between electrons and heavy 
particles, it uses the result derived by the 13-moment 
approximation.2 For diatomic plasmas, in the range of 

temperatures and power densities that we have con-
sidered, radiation losses can be neglected in the electron 
energy equation. We have used values for the energy 
loss factor of electrons in hot nitrogen that have been 
measured experimentally in our laboratory.3 

The mathematical problem that consists of the 
streamfunction, electron energy and finite rate (con-
tinuity) equations, the geometry of interest, and the 
appropriate boundary conditions (see Appendix) has 
been solved numerically. The solution was based on 
an iteration scheme that obtains a converging sequence 
for the electron temperature profile. The computation 
starts with an arbitrary approximation for the electron 
temperature variation in the region of interest T.= 
T.(x, y). Then, taking into consideration the given 
gasdynamic profiles for the total static pressure p and 
the gas temperature T g , we calculate the spatial vari-
ations of all plasma properties, and thus determine 
M(x,y),N(x,y) andP(x,y) inEq. (1). We distinguish 
two cases. 

I-----ANODE 
FIG. 2. Current streamlines: uniform gas temperature computa-

tion with thermal diffusion. Range of Hall parameter variation in 
the field: f3/.= 1.7-3.8. 

3 S. T. Demetriades, Phys. Review 158, 215 (1967). 
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FIG. 3. Electron temperature pro-
file (in OK) : uniform gas temperature 
computation with thermal diffusion 
(corresponds to the current distribu-
tion of Fig. 2). 

CATHODE 

J------ ANODE ------+Ot-I 

1. INSTANTANEOUS REACTION RATES 

In this case which is valid when Ln e
2'r(Te)/U»1 

[where L=electrode period in meter, r(Te) = electron 
recombination rate coefficient, and ne = electron number 
density], the continuity equations reduce to algebraic 
Saha equilibrium relations. Assuming ionization equi-
librium at the electron temperature and dissociation 
equilibrium at the gas (or the electron) temperature, 
we can determine the number of densities of all com-
ponents and thus, using the theory of Ref. 2, all plasma 
properties as functions of T e, Ta, and p. 

2. FINITE REACTION RATES 

In this case, we need information about ionization 
and dissociation rates of the chemical species that con-
stitute the plasma. Using experimental or theoreti-
cal values for these rates as functions of T., together 
with the assumed T. profile and the given velocity pro-
file U = U(x, y), we can again determine the number 
densities of all plasma components as functions of x 
and y and thus find M(x, y), N(x, y) and P(x, y). 

When the obtained values of M, N, and P are sub-
stituted in Eq. (1), the latter assumes a linear elliptic 

form. This elliptic equation, together with the boundary 
conditions, is then solved numerically with a variable 
mesh grid and a direct numerical method. In practice, 
iterative methods tend to be preferred for solving the 
large sparse linear systems of finite-difference equations 
that correspond to elliptic partial differential equations, 
because such methods (e.g., over-relaxation) can take 
advantage of the sparsity (i.e., the numerous zeros) 
in the matrix of the unknowns. However, iterative 
methods encounter serious convergence difficulties in 
the neighborhood of singular points. In this problem, 
the edges of the two conductors are singular points 
of the streamfunction equation, and considerable con-
vergence difficulty in their neighborhood has been en-
countered in previous numerical studies, all of which 
have used iterative methods to solve the streamfunction 
equation. For example, "the number of iterations re-
quired for the determination of a single J distribution 
varies from 500 to 2000."4 We have avoided these 
difficulties and also greatly reduced the computing effort 
by using a direct method of solution, i.e., by inverting 
the matrix of the unknowns. We have done this by 

4 L. L. Lengyel, Eighth Symposium on Engineering Aspects of 
Magnetohydrodynamics, Stanford (1967). 
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FIG. 4. Current streamlines: boundary-layer computation with 
thermal diffusion. Range of Hall parameter variation in the field: 
f3/E= 

inventing a recursive elimination procedure that takes 
full advantage of the sparsity of the matrix for this 
problem and allows us to invert a matrix of order n 
instead of order n2 when treating an nXn grid. Our 
approach is quite straightforward and demonstrates 
the advantages and limitations of direct methods; de-
tails will be published in a company report. 

Finally, after the current density field has been de-
termined, we use the electron energy equation to com-
pute algebraically the new electron temperature profile 
that is consistent with it, and use this computed Te 
profile as the input to the next iteration cycle. 

This procedure has been found to converge over a 
fairly wide range of operating conditions. Typical re-
sults are illustrated in Figs. 1-7. They all refer to a 
nitrogen gas flow seeded with 0.5% potassium, and 
have been computed under the assumption of instan-
taneous reaction rates. The channel geometry and 
operating conditions are: conductor length lc= 12 mm, 
insulator length li=3 mm, electrode period L=l.+lc= 
15 mm, interelectrode distance D= 20 mm, magnetic 
induction B=2 Wb/m2, average current density (Jy ) = 
30 A/cm2, gas pressure p=0.5 atm, gas temperature 

in the core Tg=3000°K. The assumed gas temperature 
variation Tg(y) in the boundary layer is indicated in 
italics on Figs. 3, 5, and 7. (The computation has 
started approximately one electron mean free path 
away from the wall surface.) 

Our work has led to the following conclusions: 

(1) Thermal diffusion is a significant factor in non-
equilibrium J x B devices, particularly accelerators, 
because of the severe electron temperature and pres-
sure gradients that can be generated in these devices. 
The direction of these gradients near the anode is 
different than their direction near the cathode, and 
therefore, these gradients tend to increase the effective 
electric field [left-hand side of Eq. (3) ] near one elec-
trode, and to decrease it near the other. As a conse-
quence, these gradients lead to asymmetrical· current 
distribution in the channel, and different current con-
centrations on the anodes than on the cathodes. Asym-
metrical behavior has been repeatedly reported in ex-
perimental observations, whereas previous theories/HI 
having omitted this effect as well as the effect of finite 
reaction rates, had predicted centrally symmetric dis-
tributions. Note that Refs. 6-8 have neglected all non-
uniformities in the streamfunction equation and have 
solved Laplace's equation; such analyses are known as 
"constant property" calculations. 

(2) A second physical mechanism that contributes 
significantly to asymmetrical behavior in crossed-field 
channels is the influence of finite reaction rates. As the 
plasma moves downstream, it undergoes, within the 
length L of one electrode region, ionization, dissociation, 
and recombination at finite rates, and this leads to an 
asymmetrical distribution of the plasma properties. 
The hot region at the edge of the one electrode tends to 
smear downstream, and the hot region near the edge 
of the other electrode tends to become more concen-
trated. 

(3) Extensive calculations of the current density 
field in potassium-seeded nitrogen plasmas have shown 
that when reaction rates are fast and the gas velocity 
U relatively low, there is no big axial current in those 
regions; in other words there is no evidence of current 
"shorting" through the boundary layer. It should be 
emphasized that the high-glow regions that are ob-
served visually need not be taken to coincide with the 

• The symmetry referred to here is a central symmetry, or 
point symmetry, with respect to the point P of the centerline of the 
channel that is defined by the intersection of two "diagonal" lines, 
the one connecting the upstream edge of the anode to the down-
stream edge of the cathode and the other the downstream edge of 
the anode to the upstream edge of the cathode. Note that in each 
electrode pair region, there are two such points P, one between the 
conductor segments and the second between the insulator 
segments. 

• H. Hurwitz, R. W. Kilb, and G. W. Sutton, J. Appl. Phys. 32, 
205 (1961). 

7 J. C. Crown, United Aircraft Corp. Rept. R-1852-2 (1961). 
8 Z. N. Celinski and F. W. Fischer, AIAA J. 4, 421 (1966). 
9 J. L. Kerrebrock, AIAA J. 4, 1938 (1966). 
10 A. Sherman, Phys. Fluids 9, 1782 (1966). 
11 D. A. Oliver and M. Mitchner, AIM J. 5, 1424 (1967). 
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FIG. S. Electron-temperature pro-
file (in OK): boundary-layer computa-
tion with thermal diffusion (corre-
sponds to the current distribution of 
Fig. 4). 
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actual path of the current over the entire region. Plots 
of the electron temperature contours in the computed 
geometries (e.g., Figs. 3, S, and 7) over a wide range 
of static pressures and temperatures indeed display the 
visually observed behavior: the high-temperature 
region extends over almost the whole surface of the one 
electrode (the cathode or the anode depending on 
whether the device is an accelerator or a generator), 
and then quite abruptly dips vertically from the down-
stream end of that electrode to the downstream end of 
the second electrode, without extending over the re-
maining part of the second electrode's surface. Com-
parison of these plots with the corresponding current 
streamfunction plots (e.g., Figs. 2, 4, and 6, respec-
tively) illustrates that the regions of highest luminosity 
(or temperature) do not necessarily coincide with the 
current path from anode to cathode of each electrode 
pair. In fact, the visual observation that in accelerators 
the current goes from the anode of one electrode pair 
to the cathode of the next downstream pair is shown 
by these computations to be a quite understandable 
optical illusion. 

(4) For high values of the ratio /3/€ and of the mean 
current density (fy), the current distribution in Faraday 
devices can display pronounced streamwise nonuni-

Te 

Te 

formities both in the core and in the electrode boundary 
regions. In the region of the core that is bounded (in 
the y direction) by the two conductor segments, the 
current lines can be almost parallel to the flow direction. 
However, as we proceed towards the (usually narrow) 
region of the core that is bounded by the insulator seg-
ments, we observe a striking increase in the slope of 
the current streamlines, which now become almost per-
pendicular to the flow direction and much denser. In 
other words, the current density is high in the same 
region where it is perpendicular to the flow direction. 
This confirms the desirability of reducing the length 
of the conductor segment for more efficient J x B 
coupling and shorter channels, as has already been 
pointed out by Demetriades.I2,13 

In our computations, the influence of the different 
physical mechanisms can be investigated separately 
by suppressing appropriate coefficients. Thus, Figs. 6 
and 7 have been obtained by suppressing the effect of 

12 S. T. Demetriades, A. P. Kendig, G. S. Argyropoulos, A. N. 
Kontaratos, and N. W. Gebbie, Tech. Rept. AFFDL-TR-6S-132, 
Air Force Flight Dynamics Laboratory, Wright-Patterson AFB, 
Ohio (February 1966). 

13 S. T. Demetriades, Third Symposium on Engineering Aspects 
of Magnetohydrodynamics, University of Rochester, March 1962, 
Proceedings (Gordon and Breach Science Publishers, Inc., 1963), 
pp. S07-S25. 
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CATHODE 

FIG. 6. Current streamlines: boundary layer computation with-
out thermal diffusion. Range of Hall parameter variation in the 
field: tJ/.= 1.6-4.1. 

electron temperature and pressure gradients, but main-
taining the variation of the gas temperature in the 
boundary layer. Comparison with Figs. 4 and 5, re-
spectively, shows the effect of the electron temperature 
and pressure gradients; without them, the distributions 
become again centrally symmetric (Figs. 6 and 7). 
We do not present figures showing the effects of finite 
reaction rates qualitatively described above because 
there exist some doubts on the actual magnitudes of 
the reaction rate constants in these mixtures at high 
electron temperatures. 

The theoretical results presented in Figs. 2-6 are 
in remarkable agreement with previous experiments13- 17 

14 S. T. Demetriades, Second Symposium on Engineering 
Aspects of Magnetohydrodynamics, Philadeplhia, Pa., March 
1961; Engineering Aspects of Magnetohydrodynamics, C. Mannal 
and N. W. Mather. Eds. (Columbia University Press, New York 
1962), pp. 19-44. 

16 S. T. Demetriades and R. W. Ziemer, Phys. Fluids 4, 1568 
(1961) . 

16 S. T. Demetriades and P. D. Lenn, AIAA J. 1, 234 (1963). 
17 S. T. Demetriades and R. W. Ziemer, Magnetohydrodynamics, 

A. B. Cambel, T. P. Anderson, and M. M. Slawsky, Eds. (North-
western University Press, Evanston, 1962), pp. 185-205. 

and with the earlier phenomenological theory of 
Demetriades et al,l8-21 Figure 1 gives the result of the 
so-called "constant property" analysis for the same con-
ditions, and has been .included for purposes of com-
parison. As indicated by Fig. 1, "constant property" 
analyses predict that perturbations due to the seg-
mented electrodes are limited to the regions near the 
anode and cathode, the current distribution in the 
largest portion of the duct being fairly uniform. On the 
other hand, our work has shown (Figs. 2, 4, and 6) 
that the current distribution in nonequilibrium devices 
can be highly nonuniform even in the core, the varia-
tion of both the magnitude and the slope of the current 
density J with respect to x being of particular signifi-
cance. Although :some success has been reported22 in 
describing over-all characteristics of J x B accelerators 
on the basis of "constant property" analyses, it is clear 
that such analyses are not always sufficient to describe 
the local electrical behavior of nonequilibrium J x B 
devices and that the methods of the present study may 
be used to obtain valid design information for such 
devices. 
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APPENDIX 

1. Streamfunction Equation 

Equation (1) of the text has been derived by using 
the steady-state field equations 

V xE=O, 

v·J=o, 
(Al) 

(A2) 

and operating on Ohm's law with the curl operator. 
In the two-dimensional geometry of interest to us, 

Ohm's law [Eq. (3) of the text] can be written in the 
form 

where 

E+ U xB+K= (e/O")]+ (,6/0")] x ez, (A3) 

,6=O"xB, 

e=1+mf;B2, 

(A4) 

(AS) 

18 S. T. Demetriades, G. L. Hamilton, R. W. Ziemer, R. W. 
Jarl, and P. D. Lenn, Progress in Astronautics and Aeronautics. 
E. Stuhlinger, Ed. (Academic Press Inc., New York, 1963), Vol. 9, 
pp.461-511. 

19 S. T. Demetriades, Physico-Chemical Diagnostics of Plasmas, 
P. Anderson et al., Eds. (Northwestern University Press, 

1964), p. 297. 
20 A. N. Kontaratos and S. T. Demetriades, Appl. Sci. Res. 11, 

Sec. B (1965). 
21 s. T. Demetriades, Astronautics 7, No.3, p. 21 and No.4, 

p. 40 (March and April 1962). 
22 D. R. Wilson and L. E. Rittenhouse, Fifth Hypervelocity 

Techniques Symposium, University of Denver (1967). 
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1----- CATHODE 

FIG. 7. Electron-temperature pro-
fIle (in OK): boundary-layer computa-
tion without thermal diffusion (corre-
sponds to the current distribution of 
Fig. 6). 
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and ez is the unit vector in the magnetic field direction. 
Under the operating conditions of practical J x B de-
vices, the magnetic Reynolds number is much smaller 
than unity and the induced magnetic field can be 
neglected. 

The current density J(x, y) is defined in terms of the 
streamfunction 'i'(x, y) as 

J= V x ('i'e.) , (A6) 

so that when we take the curl of Eq. (A3) we find 

Vx(UxB+K) 

= V x [(€/<T) V x ('i'e.) + (fJ/<T) (V x'i'e.) x eJ. 

(A7) 

Projection of the vectorial Eq. (A7) on the z aXIs 
yiel ds Eq. (1) of the text. 
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2. Geometry and Boundary Conditions 
The geometry of interest is one electrode-pair region 

in the main part of a multielectrode channel. We are 
not concerned with inlet or exit effects. We have thus 
used periodic conditions with respect to x, namely 

J(x, y) =J(x+L, y), 

T.(x, y) = Te(x+ L, y), (AS) 

where L is the electrode period. 
The boundary conditions on the electrode walls are: 

(a) on the conductor Ex=O, or, from Eq. (A3), 

Kx= (€/<T)J2 + ({3/<T) J y 

= (€/ <T) [a'i' /ay- (fJ/€)(a'i' lax)]. (A9) 

(b) On the insulator Jy=O, or 
'i'=const. (AlO) 
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