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ABSTRACT
This paper proposes an explanation for the Pioneer anomaly: an unexplained Sunward ac-

celeration of 8.74 ± 1.33 × 10−10 m s−2 seen in the behaviour of the Pioneer probes. Two

hypotheses are made. (1) Inertia is a reaction to Unruh radiation and (2) this reaction is weaker

for low accelerations because some wavelengths in the Unruh spectrum do not fit within a

limiting scale (twice the Hubble distance) and are disallowed: a process similar to the Casimir

effect. When these ideas are used to model the Pioneer crafts’ trajectories, there is a slight re-

duction in their inertial mass, causing an anomalous Sunward acceleration of 6.9 ± 3.5 ×
10−10 m s−2 which agrees within error bars with the observed Pioneer anomaly beyond

10 au from the Sun. This new scheme is appealingly simple and does not require adjustable

parameters. However, it also predicts an anomaly within 10 au of the Sun, which has not been

observed. Various observational tests for the idea are proposed.
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1 I N T RO D U C T I O N

Anderson et al. (1998) have detected a constant unexplained ac-

celeration of both Pioneer 10 and Pioneer 11 of 8.74 ± 1.33 ×
10−10 m s−2 directed approximately towards the Sun. Since the be-

haviour of the Pioneer craft should be predictable because of their

spin-stabilization (Anderson et al. 1998, 2002) but disagrees with

our present understanding of motion, and since no convincing mun-

dane physical explanation has so far been successful, the anomaly

will be assumed here to be real.

Combining Newton’s second law, and his law of gravity, the ac-

celeration of a body of gravitational mass mg due to a larger body

of mass M at a distance r is

a = G Mmg

m ir 2
, (1)

where mi is the inertial mass and G is Newton’s gravitational con-

stant. Usually, we assume that mi = mg (the equivalence principle).

However, this formula shows that to account for the anomalous ac-

celeration a of the Pioneer craft towards the Sun we can increase

G, increase M, or increase mg/mi.

The Pioneer anomaly is similar to the galaxy rotation problem

which also involves an unexplained acceleration towards a centre of

mass. One solution to this problem was proposed by Milgrom (1983)

and is called MOdified Newtonian Dynamics (MOND). This theory

has proved successful in reproducing galaxy rotation curves and

is usually (but not necessarily) based on the first approach men-

tioned above: G is increased for accelerations lower than 1.2 ×
10−10 m s−2. This is also the approach of the relativistic extension
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of MOND by Bekenstein (2004) which is called TEVES. As an al-

ternative, G can be modified at long distances. This is the approach

taken by the Scalar–Tensor–Vector Gravity (STVG) theory of Mof-

fat and Brownstein (2006) which has been used to model the Pioneer
anomaly, though they needed adjustable parameters to do this. The

conformal gravity theory of Mannheim (1990) also modifies G so

that it is repulsive at long distances.

An example of the second approach (increasing M) is the dark

matter hypothesis of Zwicky (1933). Excess, invisible, matter is

added to the galaxy to explain the implied extra centripetal acceler-

ation. However, dark matter fits to galaxies have three free param-

eters, whereas MOND has only one: the mass-to-light ratio (M/L)

(Sellwood 2004).

The third approach, reducing the inertial mass (mi), was first sug-

gested by Milgrom (1983) who realized that MOND could be ex-

plained as a modification of inertia instead of G. In later papers

(Milgrom 1994, 1999), he suggested a possible physical cause for

the inertial version of MOND which is discussed in Section 2.1 be-

low. As he noted, there are some observations that imply that it is

inertia that should be modified and not G or M. For example, the

possible change in behaviour of the Pioneer craft upon moving from

a bound to an unbound trajectory (to be confirmed, or not, soon, by

the Pioneer team), and the planets, which are on bound orbits, do

not seem to show the anomaly. Also, MOND behaviour in galax-

ies begins below a limiting acceleration and not beyond a limiting

distance, as noted by Sanders & McGaugh (2002).

One possibility for a model of inertia is that of Haisch, Rueda

& Puthoff (1994) who proposed that an accelerated object feels a

magnetic Lorentz force through its interaction with a zero-point

field (ZPF) similar to the Unruh field (Unruh 1976). This force is

given by F = −�ω2
c h̄a/2 πc2, where � is the Abraham–Lorentz

damping constant of the parton being oscillated, h̄ is the reduced
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Planck constant, ωc is the Compton scale of the parton below which

the oscillations of the ZPF have no effect on it, c is the speed of

light, and a is acceleration. Haisch et al. (1994) showed that this

force behaves like inertia.

One objection to a modification of inertia is that it violates the

equivalence principle, which has recently been tested to an accuracy

of 10−13 kg by Baessler et al. (1999). However, this principle has

not been tested at the low accelerations seen by the Pioneer craft or

by stars at the edges of galaxies.

2 T H E M O D E L

2.1 Unruh radiation curtailed at the Hubble distance

After work by Hawking (1974), Unruh (1976) showed that a body

with an acceleration a sees thermal radiation of temperature T
where

T = h̄a

2πck
, (2)

where k is Boltzmann’s constant. The dominant wavelength of this

radiation (λm) is given by Wien’s displacement law (λm = W/T),

where W is Wien’s constant. Replacing T using equation (2) and W
with βhc/k, where β = 0.2 leaves

λm = 4π2βc2

a
. (3)

Milgrom (1994, 1999) realized that as the acceleration decreases

the wavelength λm increases, and eventually becomes as large as the

Hubble distance (c/H) where H is the Hubble constant. He spec-

ulated that at this point there would be a ‘break in the response

of the vacuum’: the waves of Unruh radiation would be unobserv-

able. He further speculated that this could have an effect on inertia,

if inertia is linked to a form of Unruh radiation, as suggested by

Haisch et al. (1994). He suggested this as a cause of MOND be-

haviour. Taking the limiting distance to be twice the Hubble distance

(a Hubble diameter: � = 2c/H), we can infer the acceleration at

which this break would happen for Unruh radiation by rearranging

equation (3) as

a = 4π2βc2

λm
. (4)

Substituting β = 0.2, c = 3 × 108 m s−1 and λm = � = 2c/H =
2.7 × 1026 m (since H = 2.3 ± 0.9 × 10−18 s−1), the predicted

critical acceleration is a = 26 × 10−10 m s−2. Below this acceler-

ation, inertia could be affected by Milgrom’s break. This is larger

than the acceleration constant of a = 1.2 × 10−10 m s−2 required

for MOND (Milgrom 1983) for fitting galaxy velocity curves. It is

close to the Pioneer anomaly, but Milgrom’s (abrupt) break can-

not explain the Pioneer anomaly, since the Pioneer acceleration at

50 au from the Sun was still too large, about 10−5 m s−2, and this

acceleration implies Unruh wavelengths of only 0.03 per cent of the

Hubble distance.

2.2 A Casimir-like effect at the Hubble scale

Here, Milgrom’s long-wavelength cut-off idea is modified so that

we assume that only wavelengths of the Unruh radiation that fit

exactly into twice the Hubble distance (� = 2c/H) are allowed:

those harmonics with nodes at the boundaries. This is an idea similar

to the Casimir effect in which the energy of the ZPF is reduced

between conducting plates because only certain wavelengths can

exist between them (Casimir 1948).
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Figure 1. A schematic in which the vertical dashed lines show the wave-

lengths that fit within twice the Hubble distance and are allowed in this

model. Unruh spectra for different accelerations are also shown. The one

on the right-hand side represents a lower acceleration, and is more sparsely

sampled by the allowed wavelengths.

Fig. 1 shows the energy of Unruh radiation as a function of the

wavelength. The allowed wavelengths are shown by the dashed ver-

tical lines. As for the Casimir effect, these wavelengths are given by

λn = 2�

n
. (5)

where n = 1, 2, 3. . .etc. For an object with high acceleration, the

temperature of the Unruh radiation is high, the Unruh wavelengths

seen are short and the Unruh energy spectrum looks like the curve

on the left-hand side. In the schematic, this spectrum is sampled

by five or six of the allowed wavelengths so that much of the

energy in the Unruh spectrum remains. However, if the acceler-

ation is reduced, then the object sees the spectrum on the right-

hand side. In this case, only one of the wavelengths is allowed

because the others do not fit within � and so the spectrum is more

sparsely sampled, and the energy of the Unruh radiation is much

lower than expected. In this new scheme, some spectral energy is

lost at wavelengths shorter than �, and this allows the prediction

of the Pioneer anomaly, which cannot be explained by the more

abrupt break mentioned in Milgrom (1994, 1999) and discussed in

Section 2.1.

If the Unruh energy spectrum is given by a function f(λ), then the

unmodified inertial mass (mi) is assumed here to be proportional to

the integral of this:

m i ∝
∫ ∞

0

f (λ) dλ. (6)

To model the effect of the increasingly sparse sampling of the spec-

trum at long wavelengths, the weight of longer wavelengths in equa-

tion (6) is reduced by using a factor F to account for the reduction

in sampling density when going from the continuous sampling of

the spectrum to the discrete sampling. By direct calculation, it was

found that the number of allowed wavelengths available to sample
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the Planck spectrum varied linearly as λ−1
m over the range of wave-

lengths studied here, where λm is the peak wavelength of the spec-

trum (this was done by counting the number of allowed wavelengths

where the spectral energy was more than 1 per cent of the peak en-

ergy). Therefore, we assume that F = A
λm

+ B, where A and B are

constants. When λm → 0, the normal continuous sampling should

be recovered and F = 1. When λm → 4�, no energy is sampled so

F = 0 (this is Milgrom’s break, as discussed above). Using these

conditions, A and B can be found and the factor can be shown to be

F = 1 − λm/4 �. The model for the modified inertial mass (mI) is

therefore

mI ∝
∫ ∞

0

f (λ) dλ

(
1 − λm

4�

)
. (7)

From equations (6) and (7)

mI = m i

(
1 − λm

4�

)
. (8)

Using equation (3) and assuming that the equivalence principle ap-

plies to the unmodified inertial mass, that is, mi = mg, the modified

inertial mass mI becomes

mI = mg

(
1 − βπ2c2

a�

)
. (9)

Here, mI behaves in a way similar to what would be expected for

MOND (Milgrom 1983). For large accelerations, the second term in

the brackets is negligible and the standard inertial mass is recovered.

However, as the acceleration decreases, the second term becomes

larger, and mI falls farther below mg. For accelerations much lower

than that seen here, it is possible for the term in brackets to be

negative, implying a negative inertial mass. However, in this model,

such a low acceleration would never be attained, since a body with

an inertial mass approaching zero would tend to accelerate again:

there is a minimum acceleration. For an acceleration of 9.8 m s−2,

the inertial mass of a 1 kg object is predicted to be 7 × 10−11 kg

lower. For the small accelerations seen by the Pioneer craft, which

are far from a gravitational source, the inertial mass is predicted to

decrease by 0.01 per cent. At some point, the acceleration, acting

now on a lower inertial mass, increases again. Eventually a balance

is achieved, as modelled below, around a particular acceleration.

Assuming modified inertia, the equation of motion for the Pioneer
craft is

F = mIa = G M�mg

r 2
, (10)

where M� is the solar mass and r is the distance from the Sun.

Substituting for mI from equation (9), we can find the balance point

mentioned above:

a = G M�
r 2

+ βπ2c2

�
. (11)

Therefore, the acceleration is given by the usual Newtonian inverse

square law, but with an additional constant term caused by the loss

of inertia. This new term has a value of 6.9 ± 3.5 × 10−10 m s−2

which is about six times larger than the 1.2 × 10−10 m s−2 required

for MOND. The 40 per cent (±3.5) uncertainty arises because of

uncertainties in the Hubble constant (see Section 2.1).

According to equation (11), all bodies, even if there is no source

of gravity (M� = 0), would show a minimum acceleration, given by

the second term on the right-hand side, which can be rearranged to

give 1
2
βπ2cH ∼ 0.99 × cH which is close to the observed Hubble

expansion rate (cH). Therefore,

a = G M�
r 2

+ 0.99 × cH . (12)

Figure 2. The bars show the observed Pioneer 10 and Pioneer 11 anomalies

as a function of distance from the Sun (au) (taken from Anderson et al. 2002).

The solid line shows the Pioneer anomaly predicted by equation (11) and

the dashed lines represent the error bars for the model.

3 R E S U LT S

The vertical error bars in Fig. 2 show the observed Pioneer anomaly

as a function of distance from the Sun out to 45 au taken from

Anderson et al. (2002). Within about 10 au of the Sun, the anomaly

was indistinguishable from zero. It increased after about 10 au to an

approximately constant value of 8.74 × 10−10 m s−2.

The solid line shows the acceleration anomaly predicted by the

extra term in equation (11) and the horizontal dashed lines show the

error bars for the prediction. The predicted anomaly was a constant

6.9 ± 3.5 × 10−10 m s−2, which is in agreement with the observed

anomaly from 10 to 45 au from the Sun.

The model predicts that the anomaly should also be found within

10 au of the Sun and this does not agree with the first data point

at 6 au from Anderson et al.’s (2002) data (see the leftmost bar in

Fig. 2) which shows no anomaly. Also, the planets do not show

an anomaly. This difference may be due to the Pioneer’s unbound

trajectory. As noted by Milgrom (2006), for theories of modified

inertia the acceleration depends on the trajectory as well as the

position. A further analysis of the Pioneer data is ongoing (Toth &

Turyshev 2006) and should improve the data resolution at the crucial

point where the Pioneers’ trajectories became unbound: between 5

and 10 au.

The fit of this model to the Pioneer data is less close than that

obtained by Brownstein & Moffat (2006). However, they fitted their

model to the Pioneer anomaly data using two adjustable parameters,

whereas there are no adjustable parameters here.

4 D I S C U S S I O N

One of the consequences of this idea, not considered by the

parametrization of Section 2.2, is that at certain accelerations the

Unruh spectral peak is directly sampled by the allowed wavelengths,

and mI/mg is then at a temporary peak. At other accelerations,

the nearest sampling wavelength would be slightly off-peak and so
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mI/mg would be lower. These ideas therefore predict that the Pioneer
data (and also galaxy rotation curves) may show a radial variation

in the ratio of mI/mg as the favoured accelerations are sampled one

by one moving out from the Newtonian regime near the centre of

the Solar system (or galaxy) to the lower accelerations farther out,

with further consequences for dynamics. At 40 au from the Sun,

the number of allowed wavelengths in the Unruh spectrum seen by

Pioneer, counted as described in Section 2.2, is about 4000. Thus,

the spectrum is still quite well sampled, and these variations may

be too small to detect. However, near the edges of galaxies, acceler-

ations are much lower, and the Unruh spectrum would be sampled

by only a few wavelengths. Therefore, the differences in the ratio

mI/mg between a case in which the discrete sampling hits the spec-

tral peak and a case in which it misses it, would be more obvious,

and the impact on stellar dynamics of the variations should be more

easily detected.

As mentioned above, an analysis of newly recovered Pioneer
data from the inner Solar system is currently in progress (Toth &

Turyshev 2006) and would support a theory of modified inertia,

though not necessarily this one, if it is confirmed that the anomaly

began at the same time that the Pioneer probes moved from bound

orbits to hyperbolic ones (Milgrom 1999). These new data may

also resolve the direction of the anomalous force. An acceleration

towards the Sun would imply modified G, one towards the Earth

would imply a problem with time, and an acceleration along the

Pioneer trajectory would imply some kind of modified inertia.

Zhao (2005) and Zhao & Tian (2006) have shown that if MOND is

true instead of Newtonian theory, then Roche lobes should be more

squashed and therefore it should be possible to test for MOND by

investigating a local Roche lobe. This test could also differentiate

between modified gravity and modified inertia versions of MOND,

since for modified inertia the shape of the Roche lobe would depend

on the approach trajectory of the probe, and for modified gravity it

would not.

In this scheme, there is a minimum allowed acceleration which

depends on a Hubble scale �, so, if � has increased in cosmic time,

there should be a positive correlation between the anomalous cen-

tripetal acceleration seen in equivalent galaxies, and their distance

from us, since the more distant ones are seen farther back in time

when, if the universe has indeed been expanding, � was smaller.

The M/L does seem to increase as we look farther away. The M/L

of the Sun is 1 by definition, for nearby stars it is 2, for galaxies it is

50, for galaxy pairs it is 100 and for clusters it is 300. As an aside,

equation (11) could be used to model inflation, since when � was

small in the early universe the minimum acceleration is predicted

to be larger.

Part of this scheme is the hypothesis that Unruh radiation of very

low temperature is weaker than expected, because of a wavelength

limit, so it is logical to extend this to the temperature of any object.

If the limiting wavelength idea is correct, then the energy radiated

by a very cold object should be less than that expected from the

Stefan–Boltzmann law. The coldest temperature achieved so far is

100 pK at the Helsinki University of Technology (Knuuttila 2000).

Using Wien’s law, an object this cold would have a peak radiating

wavelength of 3 × 107 m. By analogy to equation (8), the energy of

the blackbody radiation spectrum (E) would be modified to E′ as

E ′ = E

(
1 − λm

4�

)
= E(1–2.7 × 10−20) J. (13)

It is unknown to the author whether differences in radiating energy

as small as this can be detected.

The Hawking (1974) temperature of a black hole is given by an

expression very similar to that of Unruh but involving the mass of

a black hole M:

T = h̄c3

8πG Mk
. (14)

As in Section 2.1, we can use Wien’s law (T = W/λm = βhc/k λm)

again to substitute for T and impose a limit on the allowed wave-

length:

16π2G Mβ

c2
� 2c

H
. (15)

Therefore,

M � c3

8π2Gβ H
. (16)

Substituting c = 3 × 108 m s−1, G = 6.67 × 10−11 N m2 kg−2, β =
0.2 and H = 2.3 × 10−18 s−1, we get M � 1 × 1052 kg. This is a

predicted maximum mass of a black hole: about 1022 M�.

The assumptions made in equations (6) and (7) have not individu-

ally been verified, but they do produce results similar to the Pioneer
anomaly. A criticism of this scheme could be that the parametriza-

tion of the decrease in sampling density neglects subtle variations as

the Unruh spectrum falls between allowed wavelengths, and these

variations could be useful for testing the idea. The simple model de-

veloped here should ideally be replaced by a model that calculates

mI more directly, by sampling the Unruh spectrum discretely.

5 C O N C L U S I O N S

Two hypotheses were made. (1) Inertia is a reaction to Unruh radi-

ation and (2) this reaction is weaker for low accelerations because

some wavelengths in the Unruh spectrum do not fit within a limit-

ing scale (twice the Hubble distance) and are disallowed: a process

similar to the Casimir effect.

Using these ideas, the Pioneer acceleration anomaly was pre-

dicted to be 6.9 ± 3.5 × 10−10 m s−2, which agrees within error

bars, beyond 10 au from the Sun, with the observed value of 8.74 ±
1.33 × 10−10 m s−2.

This scheme is appealingly simple, and does not require ad-

justable parameters. However, the model predicts an anomaly within

10 au of the Sun which is not observed. Various tests of this idea

are also discussed, including the possibility that subtle variations

in galaxy acceleration curves (if not the Pioneer data) might be

detectable.
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