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Arnold Shapiro's Eversion 
George K. Francis and Bernard Morin 

of the Sphere 

Dedication. We dedicate this article to the memory of  
Arnold Shapiro, who gave the first example of  how to 
turn the sphere inside out, but never published it. His is 
not the simplest, nor the most interesting of  the many 
explicit eversions that have been devised since. It is, how- 
ever, the only one that uses only standard topological 
constructions. Thus it is of  value to the history and philo- 
sophy of mathematics, for, had it been better explained 
in its day, the subject would hardly have occupied so 
many people in the intervening two decades. We have 
written it up from memory and in a conventional expo- 
sitory style, but hope that the illustrations will aid the 
inner eye to see Shapiro's ingenious ideas. 

An i m m e r s i o n  f :  M 2 -+ IR 3 of  a closed surface in space is a 

smooth map whose differential is everywhere of  maximal 
rank. A one-parameter deformation,ft  : M z -> IR 3 , t E 

[0, 8], is a regular  homotopy  i f  t -+ f t  is continuous in the 
C 1 -topology on the space of  immersions. I f f  is one-to-one, 
it is called an e m b e d d i n g  and a regular homotopy of  embed- 
dings is called an i s o t o p y .  An ever s ion  of the sphere is a 
regular homotopy from the standard embedding f0 : $2 --> 
IR 3 to fs(x, y, z) = f 0 ( - x ,  - y ,  - z ) .  Hilbert's student, 
Werner Boy, recognized the importance of regular homo- 
topies in his dissertation of  1901. One dimension lower, 
he discovered that the tangent winding number classifies 
immersions of  the circle in the plane up to regular homo- 
topy [ 1 ]. In 1937, Whitney and Graustein [ 13 ] found an 
elegant proof of  this theorem. The two dimensional prob- 
lem was not resolved until the late fifties, when S. Smale 
proved the remarkable fact that all immersions of  the 
sphere in space are regularly homotopic [ 12]. In particu- 
lar, there must exist an eversion of  the sphere. Bott asked 
to be shown an explicit geometrical construction of  an 
eversion. One way, suggested by H. Hopf and sketched by 
N. Kuiper [5], would be to design a regular homotopy  
taking the standard sphere to a double cover of  Boy's sur- 
face [2]. This surface, an immersed real projective plane, 
has one curve of  self-intersection with one triple point. In 
December of  1960, the late Arnold Shapiro explained such 
a motion to B. Morin. In this note we would like to share 
this ingenious eversion with the reader. 

In the intervening years many interesting eversions have 
been constructed using a variety of  graphical methods. A. 
Phillips [ 11 ] designed a series of drawings based on the 
level curves of  Boy's surface and the deformation of  its 

double cover to an embedded sphere. A new idea, suggest- 
ed by M. Froissart, was adopted by Morin in 1967 to 
create an eversion that does not use Boy's surface. The 
principal stages of an eversion through Morin's surface 
were fashioned out of  wire mesh by C. Pugh. A master- 
piece of  computer graphics, based on these models, was 
programmed by Nelson Max [6]. Humbler graphical meth- 
ods were used by J. Petit [8, 9] to display Morin's generic 
eversion, emphasizing the evolution of the double locus. A 
countable sequence of  symmetric eversions through gener- 
alized Boy and Morin surfaces were presented topologically 
by G. Francis [3, 4]. Analytic parametrizations of such 
eversions were given by Morin [7]. A more complete survey 
of  the subject appears in [ 10]. But Shapiro's original con- 
ception differs in one important aspect from all of  these. 
The subsequent examples were meant to evoke complete 
mental pictures of every part of  the motion, and for this, 
novel expository techniques were required. Shapiro assem- 
bled standard pieces of differential topology as they were 
current in the fifties. Perhaps only a deficiency in illustra- 
tion prevented Shapiro's vision from gaining the recognition 
it certainly deserved. 

His strategy is to modify a torus to an immersed sphere 
in three different ways, so that successive modifications 
span (in a sense to be made precise) the form of a canonical 
deformation, Shapiro's baseba l l  m o v e ,  which connects them 
by a regular homotopy.  The first of  these is easily seen to 
be homotopic to the sphere and the third to the double 
cover of  Boy's surface. Let 6 : D 2 -+ N3 denote an immer- 
sion of the closed disc in space so that 7 = 813D 2 : S 1 ~ T 2 
is an embedding of  the circle in the toms, and so that the 
disc is normal to the torus along 7. (We shall call the image 
of a map by the same name as the map if no ambiguity 
arises.) We may thicken 6 to an immersion 8-: D 2 x I -+  IR 3 , 
I = [ -  1, + 1 ], so that ~ = 8- I ~D x T 2 is an embedded rib- 
bon on the toms. If ') '  is nontrivial, in the sense that the 
complement of  the interior of ~ in T 2 is an embedded 
annulus A, then its union with the two discs 8-ID 2 x {-+ 1 } 
is a piecewise immersed sphere with corners along two cur- 
ves parallel to 7. We smoothe these corners according to 
the following model of a cross section of the corner. Con- 
sider the plane curve formed by two rays separated by an 
angle X, 0 < k ~< 7r, parametrized in polar coordinates as 
r = s 2 , 0 = k(1 + sgn(s))/2. The modification r '  = s 2 + e, 
0' = X(1 + o(s))/2, where o is a smooth sigmoid approxima- 
tion to the signum which rises from - 1 for s ~< - e  to + 1 
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Figure 1. Modifying the torus to two regu- 
larly homotopic immersed spheres by 
attaching discs to meridian & equatorial 
bands on the torus 

for e ~< s and o'(s) > 0 for - 1 < s < + 1, smoothes the 
corner in a small neighborhood whose size is controlled by 
e > 0. Note that ff k varies independently with time, this 
construction also defines a regular homotopy between the 
smoothed curves. This feature will be important later. 

Modification by a meridian disc on the inside of  the 
toms, or by a disc attached to a comeridian (latitude) on 
the outside, e.g. the equatorial disc spanning the hole of  
the donut, produces an embedded sphere. Shapiro did just 
the opposite. Attach a disc to a meridian on the outside of  
the toms. The resulting immersionf  I : S 2 ~ IR 3 consists in 
two disjoint spherical shells connected by a toroidal tunnel 
from the inside of  the inner shell to the outside of  the outer 
shell, see Figure 1. Attach a horizontal disc to the outside 
equator of  the torus and the resulting immersion f2 : S :  -~ 
N. 3 consists in two disjoint spherical shells connected by 
a vertical tunnel from the north pole of  the upper shell to 
the south pole of  the lower shell. To minimize the graphical 
ambiguities caused by drawing double curves, we use the 
device of windows in the figures. These are transparent 
discs embedded in the surface as well as in the viewing plane 
under projection. They are meant to reveal detail that 
would otherwise be invisible from the outside. The equa- 
torial section o f f  1 and the polar section of f2  are given 

for reference. Figure 2 suggests a regular homotopy from 
the standard spheref  0 t o f  I . But for a homotopy from f l  
to f2 we shall need Shapiro's baseball move. 

Suppose that two modifications by (6 i, 7i), i = 1,2,  are 
situated so that 3'1 and 72 cross transversally at one point 
on T 2. Suppose further that at the patch common to both 
ribbons 71 ,3 '2 ,  the thick discs 81 ,82 ,  extend locally on 
opposite sides of  the toms. We can make a model for the 
domains of  81 and ~-2 by imagining two coins balanced at 
right angles, one on top of the other, with their edges fused 
along a small square, Figure 3. The corners on the fused 
coins K form one continuous simple closed curve K that is 
reminiscent of the seam of a baseball, pinched together 
near the square. This curve K supports two obvious embed- 
ded discs, which are isotopic to each other by a deforma- 
tion through the interior of  K. The spanning disc turns 
through an angle of 90 ~ along K during the isotopy. The 
image of  this motion under the immersions 8-1 and 82, 
smoothed at the corners as prescribed earlier, gives the 
regular homotopy  from f l  to f2- 

Now consider a third simple closed curve 3'3 on T 2 
which crosses the outside equator 3'2 once and which spans 
a M6bius band/~ on the inside of  the torus. A so-called 
(2, 1)-curve is an example. Since 3'3 also spans an, albeit 

Figure 2. Regular homotopy from a sphere to an immersed sphere; 
the cross section is a regular homotopy in the plane 
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Figure 3. Shapiro's "Baseball move" 

Figure 4. The (2, 1) torus curve spans a 
M6bius band whose complement retracts 
to a double cover to the M6bius band 

Figure 5. Two ways of closing a M6bius 
band by attaching a singular disc 

immersed, disc 63 on the outside of  the torus, it separates 
an immersed projective plane,/3 : p2 ~ B  2 C IR 3 , into two 

pieces. Although we shall reconstruct the disc 53 de novo, 
its existence may be inferred as follows. Boy's surface B 2 
contains an embedded, unknot ted M6bius band with only 
1/2 twist in it. Thus it can be encased in an embedded,  un- 
knot ted  torus T 2 which cu tsB 2 along a (2, 1)-curve on 
T 2 . The complement of  the M6bius band is the disc we 
seek. Now modify T 2 by  means of  63 to obtain the immer- 
sion f3 : S 2 -~ IR 3 which is regularly homotopic  t o f  2 by a 

second baseball move. 

We next define a regular homotopy  from f3 to a double 
covering o fB  2 . The (2, 1)-band 7-3 spans a thickened 
M6bius band ~ .  The (closure of  the) complement  of  g in 
the solid torus is a twisted embedded solid semi-toms 
(semi-disc x S 1). The retraction of  a semicircle to  its diam- 

eter models the regular homotopy  of  the toral part  o f f3  
to the annulus parallel to/a  on the boundary of  ft .  Smooth- 
ing the 90 ~ corners produces an immersion parallel to Boy's 
surface. Now slide this surface along normals to B 2 to 
obtain the immersion f4 : S 2 ~ B  2. An easily overlooked 
problem remains to be resolved. There is no reason to ex- 
pect f4 to map antipodes of  S 2 into the same point  on B 2 

as the standard parametrization does. Since/3 : p2 ~ B  2 is 

an immersion in general position, it is not  hard to imagine 
f4 lifting to a double cover 7r : S 2 _+p2. Because S 2 is the 

universal covering of  the projective plane, there is a (sense 
preserving) diffeomorphism h : S 2 _+p2 so that 7r o h : S 2 -+ 

p2 is the canonical double cover n0 obtained by identifying 
antipodes. But h is isotopic to the identi ty.  Hence we 
change the homotopy  from fa to f4 so that the latter is the 
canonical double covering/3 o 7r o : S 2 ~ p 2  ~ B  2 C ~ 3 .  

Reflecting the homotopy  ft from f0 to f4 by setting f s - t  = 
ft o a,  where a : S 2 ~ S 2 is the antipodal  map, completes 
Shapiro's eversion of the sphere. 

While the first baseball move, f r o m f l  to f2, may be 
imagined, if not exactly visualized since the immersed coins 

cross each other, the second move, f2 to f3,  defies the 
imagination without a good view of  Boy's surface. The 
mental difficulty of  continuing the M6bius band spanning 
the (2, 1)-curve along a disc may be appreciated from the 
following example. A naive a t tempt  of  closing up the 
border,  Figure 5, produces Steiner's crosscap. Although 
the two pinchpoints  (Whitney umbrellas) can be cancelled, 
the double curve must first be made to cross itself at a tri- 
ple point.  In our second at tempt ,  Figure 5, we avoid the 
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Figure 6. Boy's surface with four windows, generated from an 
immersed M6bius band and an embedded disc by a regular homo- 
topy of cross sections from just above the saddle to just below the 
cusp 

outside p inchpoin t  by int roducing an apparent  cusp. We 

next  bring the entire border  to the level o f  a plane above 

the,  now immersed,  M6bius  band. Parametr iz ing this curve 

as a plane immers ion o f  the  circle, r : S 1 -~ IR 2 , we note  

that  it has the same tangent  winding number  as an embed-  

ded circle. By the Boy-Whitney-Graustein theorem,  there is 

a regular h o m o t o p y  Ct : $1 x I - ~  ~ 2  be tween  them.  One 

such h o m o t o p y  is suggested by the arrows in the plane at 

the base o f  Figure 6. I f  we elevate this h o m o t o p y  S 1 x I  

IR 2 x IR 1 : (s, t) ~ (r  t) ,  we obtain  an immersed cylin- 

der. Its double locus, wi th  its triple point ,  m a y  be imagined 

by closing the four  windows.  N o w  cap the cyl inder  wi th  a 

disc to comple te  one view o f  Boy ' s  surface. 
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