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ABSTRACT

The viscous boundary layer flow near the
leading edge of a flat plate given in supersonic and
hypersonic speeds is numerically investigated. The
boundary layer and shock wave may merge near the
leading edge depending on the Mach number,
Reynolds number and wall temperature. We consider
air as calorically perfect gas, with a constant Prandtl
number and Sutherland's law for the viscosity. The
two-dimensional Navier-Stokes equations for a non-
steady flow, with no body forces, no volumetric
heating and no mass diffusion are solved using the
explicit finite-difference =~ MacCormack's  time
marching technique. Solutions for the flow
parameters such as the boundary layer thickness, the
pressure profile in both directions (x and y
directions), the streamwise velocity profile and the
temperature and density distributions over a flat
plate  with constant surface temperature are
presented. The numerical results are also compared
with recent similarity solutions for supersonic
laminar boundary layers that use a general power
law for the viscosity-temperature relation. Nice
agreement between the solutions is found at the
trailing edge of the plate. As Mach number
increases, longer distance is needed for the boundary
layer to establish a self-similar structure.
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INTRODUCTION

The development of modern hypersonic
space vehicles requires knowledge regarding the
characteristics of hypersonic flows in the immediate
vicinity of a leading edge of lifting surfaces. Under
certain conditions, the boundary layer may remain
laminar over some distance of the vehicle. The
laminar boundary layers may be expected in
hypersonic flights at high altitudes, where the
density, and hence the Reynolds number per unit
length, is relatively low. Sternberg’ observed laminar
boundary layers at Reynolds numbers as high as 5 x
107 in flight tests of the V-2 rocket. Van Driest”
showed theoretically that when the solid boundary is
sufficiently cooled, the laminar boundary layer may
be stabilized regardless of Reynolds number at Mach
numbers from 1 to 9.

Sharp flat plates have been used to
investigate the shock wave and boundary layer
formation in rarefied to continuum flow conditions
in several experimental facilities. Experimental
results®® at supersonic speeds and rarefied free
stream conditions have indicated the existence of the
slip region near the leading edge. Also, the
experimental results’ indicate that in a continuum
flow, when Mach number is much higher than 1, slip
can take place along a limited region of the flat plate

near the leading edge of the length (. They also

show that there exists a delay in the formation of the
maximum shock wave angle and the boundary layer
near the leading edge. This delay in formation is
caused by the slip phenomena in the close vicinity of
the leading edge.>S After the slip region in the
continuum gas over a flat plate, the shock wave and
the boundary layer may merge along some distance
before separating.’ Both the formation and the delay
in the maximum shock wave angle and the boundary
layer are strongly influenced by the free stream
Mach number, M, the Knudsen number, Kn (ratio of
the mean free path, A, to the leading edge thickness,
t), and the Reynolds number, Re,, based upon the

leading edge thickness.

For flows with Knudsen number much less
than unity, a detached shock wave forms in front of
the plate and the flow after the normal shock is
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subsonic with relatively high pressure. Consequently,
there is no possibility of the existence of slip flow for
a reasonably dense gas. In this case, the viscous
effects become small and the inviscid flow over the
leading edge predominates.”®

From first order kinetic theory it can be
shown that the no slip flow may be found when

M2
intermolecular collisions, Rec is Reynolds number
based on the slip distance, {, and M is the free
stream Mach number. It can be seen that { increases
as M is increased.

A hypersonic flow over a flat plate may be
divided into four distinct regions, Figure 1.

ReC
2N. Here N is the number of
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Figure 1. Flowfield on a flat plate at hypersonic flow.

Starting from the leading edge of the plate,
hypersonic flow with slip phenomena on the plate is
formed. In this region the flow is not continuum, the
Navier-Stokes equations are not valid and the first
order kinetic flow theory may take place.’
Immediately, after the noncontinuum region, in the
strong interaction region, the flow can be considered
as continuum. In this region the shock wave and the
boundary layer are merged™ ® ° with a no slip flow
condition on the surface of the plate.

It should be noticed that in the lower
supersonic speed regime the boundary layer and
shock wave are so far apart that their interaction
effects can probably be neglected.'® ' However, the
situation is quite different when a hypersonic speed
is reached. Since the shock wave angle is

proportional to yNI’ it is so close to the flat plate

surface that the entire region between the shock
wave and the surface should be considered as a
viscous flow layer. Consequently, viscous effects
must be considered in the determination of the shock
wave and the boundary layer characteristics in the
strong interaction region. Also, in this region the
pressure gradient in the y-direction may be ignored,
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3—55 0, but the pressure gradient in the x-direction
can not be neglected, due to the presence of the
shock wave inside the viscous layer.

Li and Nagamatsu® developed a theory for
the hypersonic strong interaction between shock
wave and boundary layer for an insulated sharp flat
plate in continuum, perfect gas flow. They
considered that, starting from the leading edge, the
shock wave and boundary layer are merged with no
slip flow on the plate and the Knudsen number
equals unity. This theory is not valid in the rarefied
flow region with slip velocity condition. Thin
thickness of the shock wave was assumed. The flow
variables in the region bounded by the shock wave
and the plate surface was solved using the
compressible laminar boundary layer equations. Due
the presence of the viscous layer, a fictitious
curvature effects was considered by ER = dp,

ox dx
both momentum and energy equations. The
equations were solved with the no slip and no
penetration flow conditions at the insulated wall.
Also the free stream properties and the flow behind
the shock wave was matched. Finally, at the edge of
the outer viscous layer the pressure jump across the
oblique shock must be satisfied.

Later, Li and Nagamatsu'® developed the
similar solutions for the compressible boundary layer
flow. For a perfect gas with unit Prandtl number and
dynamic viscosity as a linear function of
temperature, the momentum and energy equations
are reducible to ordinary differential equations. Li
and Nagamatsu™ extended their formulation for a
noninsulated flat plate.

Recently, several numerical codes have been
developed to study the strong interaction of a shock
wave and boundary layer in laminar hypersonic flow
over a flat plate. The Reynolds averaged Navier-
Stokes equations were solved by Nagamatsu et al.,**
using the PARC2D code.'* In this work, the dynamic
viscosity was determined by Sutherland's law.
Anderson'! has applied the explicit finite-difference
MacCormack's time marching technique to the
Navier-Stokes equations in a two-dimensional, non-
steady flow with no body forces, no volumetric
heating and no mass diffusion. He assumed the no-
slip condition on the wall and the free stream
pressure and temperature at the stagnation point of
the leading edge of the plate rather than conditions
behind a shock wave.

Far from the leading edge region, a weaker
interaction region may be found, Figure 1. In this

in
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region, which is close to the strong interaction
region the pressure gradients in the x- and y-
directions inside the boundary layer are small and
may be ignored. However, outside the boundary
layer, in the inviscid layer between the shock wave
and the boundary layer, the pressure gradient in the
y-direction can not be mneglected. Therefore,
downstream of the strong interaction region, the
classical approach of Prandtl’s incompressible
boundary layer theory may be applied to the
compressible boundary layer.

Van Driest'® used Crocco’s method and
derived a set of ordinary differential equations to
describe a self-similar compressible laminar
boundary layer. He studied flows with free stream
Mach numbers up to 25 over a flat plate, assuming a
perfect gas obeying Sutherland's viscosity law.
Results on the skin-friction and heat-transfer
coefficients as function of Reynolds number, Mach
number, and wall-to-free stream temperature ratio
were presented.

The laminar boundary layer equations for
compressible supersonic and hypersonic flows over
an adiabatic sharp flat plate were numerically solved
by Moraes et al.'” using a finite element method.

Recently, Toro et al.”® have proposed a new
method of deriving a self-similar solution of the
compressible laminar boundary layer equations. Air
was considered as calorically or thermally perfect
gas and the viscosity as a power function of the
terpperature.  Modified  Levy-Mangler  and
Dorodnitsyn-Howarth transformations have been
introduced to solve the flow in a thin laminar
boundary layer on a smooth flat plate with no
external pressure gradient. These transformations
describe the similarity variable in terms of a power
of the density that takes into account the viscosity-
temperature power law relation. This results in an
ex’plicit relation between the stream function and the
temperature fields described by a closed coupled
system of nonlinear ordinary differential equations.
This new methodology was used to numerically
investigate the air flow in two different situations: a
hypersonic fluid flow over a flat plate,'”® and a
hypersonic fluid flow induced by a shock wave
advancing into a stationary fluid bounded by a solid
wall.”’

In the present paper the strong interaction
between a shock wave and an boundary layer, in a
hypersonic viscous flow, close to the leading edge of
the flat plate is numerically investigated. We ignore
the small slip region. The explicit finite-difference
MacCormack’s scheme is used to solve the full
Navier-Stokes equations.
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The computed flow behavior downstream of
the strong interaction region is compared with the
self-similar solution of Toro et al.'®

MATHEMATICAL MODEL

Ignoring the relatively small slip region,
where the Navier-Stokes equations are not valid, and
considering that a laminar boundary layer starts at
the leading edge and remains laminar along the
plate, the two-dimensional, non-steady flow with no
body forces, no volumetric heating and no mass
diffusion can be described, in conservative vector
form, by

§9+_£915_+8_F_0 1
ot dx dy @

A full Navier-Stokes analysis is be expected
to yield a complete solution for a continuum flow
near the leading edge of a flat plate. Here U is a
solution column vector , E and F are flux terms
column vectors, given by

[p]
otpl
pv
IE:J
( pu ]
_ +p—1
E:J puu P XX L,
puv—-1,
[(Et +p)u+qx - u'txx —VTny
( pv ]
vu—1
F=J P ” L 2
pVW+p—T,,
[(Et +p)v+qy —-ut,, —V”nyJ

The viscous terms are given by:

T, =AMV.V)+ Zug—i,
T, = k(V.V)+2u%:7,
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T T
L= 1= %y
2
A=——L. 3
3l—l 3
The total energy is given by
— 12
E = e+M— (C))
' 2

The velocity vector and the absolute values
of the velocity are given by

{/zu;+vj, |{7|=\/u2+v2 &)

For a caloricaly perfect gas, the relation
between the internal energy and specific heat at
constant volume and pressure-may be calculated by

p =pPRT, e=c,T,

R

c, =§_—1,

¢, =Y, ©)

The viscosity and thermal conductivity are
given by Sutherland’s law:

14581075 T*? ue,
w=——"——>—"""- = )
T+1104 Pr
MacCormack's TECHNIQUE

The explicit finite-difference MacCormack's
time marching technique is applied. The
MacCormack's technique is a second-order-accurate
in both space and time'" *® and it is given by

t+At t aU
Ui’j =Ui’j+ —ét— At ®

where
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(9_9) _lr(a_U)t . E et | ;
3 av‘z[ a ), ), J ©

Figure 2 shows the grid points for the time
marching technique.
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Figure 2. Grid for time-marching technique.

is calculated using forward

(au/at) ;,

spatial differences on the right side of the governing
equations from the known flow field variables at
time t, so

(aU )t _E;H,j _Ei[,j E,, - F;

=5 | = - = (10)
ot /i Ax Ay

The predicted values of the flow field '
variables can be obtained at time t + At as follows

ot

— U )
U =0 +(——— At an
Lj
— t+At
(aU/ at)ij is calculated using backward

spatial differences on the right side of the governing
equations from the known flow field variables at
time t + At,

i-1,j Lj-1

ot . Ax Ay

( a-I—J ]HAt E‘;«;At _ 'E}+Ax Et}-m _ thm

(12
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The average time U-derivative (a[_j/ at)av

now can be computed and the values of the flow field
variables are obtained.

In order to keep a second-order-accuracy for
MacCormack's technique, the forward and backward
differences are used for all spatial derivatives in the
predictor and corrector steps respectively.

In the predictor step the x-derivatives and y-
derivatives appearing in the viscous terms (viscous
shear forces and heat conduction) in E must use
backward and central-differences, respectively.
While the x-derivatives and y-derivatives appearing
in the viscous terms in F must use central and
backward-differences, respectively.

In the corrector step the x-derivatives and y-
derivatives appearing in the viscous terms in E must
use forward and central-differences, respectively.
While the x-derivatives and y-derivatives appearing
in the viscous terms in F must use central and
forward-differences, respectively.

The predictor and corrector steps are
repeated until the flow field variables approach a
steady-state value. For this purpose the densities at
each point between two consecutive steps are tested,
and if the differences is less than a specific tolerance,
a steady-state value is assumed. ’

For starting MacCormack's time marching
technique, initial conditions are needed, and the
free-stream values are placed for all variables. Also,
the explicit MacCormack's technique requires a
limitation on the time step to ensure numerical
stability. MacCormack®! suggests

A N Y
o, bl T
I—4(wi,j/Pr) 1 1 l_l
+2mmi 3 AxC +Ay2 J (13)
ij
where At = rmn[K( At g ) i’j]

for only internal grid points with 0.5 < K < 0.8.
RESULTS
For this specific problem, air will be

considered as a perfect gas with the following
properties:
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v =14, R=287kg/J K, Pr=0.71.

For all time the boundary conditions of the
problem are

u((),(), t) =0 stagnation point;

u(x #0,0, t) =0 no slip conditions;

v(x,0, t) =0 non-porous wall;

T(x #0,0, t) = constant wall temperature;
u(x,oo, t) =u, free stream velocity;

T(x, °°,t) =T, free stream temperature.

The computational code was first validated
by comparing with Anderson’s'’ results where free
stream conditions for pressure and temperature at the
leading edge were also assumed,

p(0,0,1)=p T(0,0,t)=T.,

Figures 3 and 4 describe the distribution of
the normalized pressure along the plate at Mach
number 4 for wall to free-stream temperature ratios 1
and 3, respectively. The transverse distribution of
normalized pressure, temperature, density and the
streamwise velocity at the cross section x=107 (m)
are presented in Figures 5 and 6, respectively. The
nonlinear shock wave-boundary layer interaction is
evident, resulting in complicated distributions of the
pressure and temperature. Results presented in the
Figures 3 and 5 nicely agree with Anderson’s
results.'!

3.50

Mach 4 T,
sea level ——=1
T

2.50

1.50

1.00 . ; : ;

0.000000 0.000002 0.000004 0.000006 0.000003 0.000010
x-direction length

Figure 3. Pressure distribution in x-direction.
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Figure 4. Pressure distribution in x-direction.

It can be seen that for both flow cases with

Mach mumber 4 (2% =1 and <% =3), t
ach number —— =1 and ——=3), the
T, T
shock wave and boundary layer do not merge. Also,
at the trailing edge of the plate, the pressures in both
the x-direction (Figures 3 and 4) and the y-direction
(Figures 5 and 6) are nearly constant inside the
boundary layer and both pressure gradients may be

neglected, i— =—=0.

Jx dy

16.00

Mach 4

Ty

\/\ N
Y v 1/

/
ey
/2 INE
SR

0.00 040 0.50 1.20 1.60 2.00
properties values at trailing edge

sea level
L= 0.00001 (n)

1}

12.00

4.00

Figure 5. Streamwise velocity, pressure, temperature
and density.

However, outside the boundary layer in the
region between the boundary layer and the shock
wave, the pressure distribution in the y-direction is
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not constant and there —a-g¢0but 8_p= .
ay ax

Therefore, we conclude that in the cases studied
above the classical self-similar boundary layer
equations may be used near the trailing edge of the
plate.

20.00

T" Mach 4
—_—= 3 sea level
T

L=0.00001 (m)

16.00

P
AP YA
NS
7k

0.00 1.00 2.00 3.00 400
property values at trailing edge

4.00

i;"i'4

0.00

T T T

Figure 6. Streamwise velocity, pressure, temperature
and density.

We used the approach of Toro et al.'® to
compute the self-similar boundary layer structure for

T
the case M. = 4 and 9, =;1,E'=3.0. Figure 7
presents the results for the streamwise velocity and
temperature profiles at Mach number 4. Here we
used the power o0 = 0.63 as the power in the
viscosity-temperature relation which best matches
Sutherland’s law.

10.00 .

T T I
.00 — Mm =4,9w =3 —
§ Pr=0.71 N
n 400 — —
sor | T/T, ]
1 u/u, 1
0.00 T ] T [ T i T

0.00 1.00 2.00 3.00 4.00

Figure 7. Streamwise velocity and enthalpy proﬁleé.
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In Figure 8 we compare the temperature
profiles computed at the plate trailing edge, as given
in Figure 6, with two possible similarity solutions.
One, where the temperature T at the boundary layer
edge equals T.., and the other, where it is 1.2 T.. It
can be seen that both similarity solutions nicely
predict the boundary layer thickess and the
temperature increase inside the boundary layer as
computed by the complete viscous solution.

20.00

M_=10/=3
1600 —==Numerical solution 1
\\ o T/Te=1
12.00
— | TIT |=1P
—4Rey
8.00 )
s -
4.00 Sl -
\ N
0.00
0.00 1.00 T 2,00 3.00 4.00

Figure 8. Streamwise Qelocity and enthalpy profiles.

Figures 9 to 11 show the results when the
free stream Mach number is 15 using the finite
difference and MacCormack’s technique. The
pressure distribution along the plate is given in

. dp dp
Figure 9. At the trailing edge both —and = are
dy ox
not negligible, see Figures 9 and 10. Also, in this
case both the shock wave and the boundary layer are
merged all over the plate, as Nagamatsu et al.> 5% 12
showed in their previous experimental and
numerical results.

The streamwise velocity and temperature
profiles using the self-similar solutions' at Mach
number 15 are presented in Figure 11.

The increase in the temperature inside the
boundary layer calculated by the similar solution,
agrees nicely with the numerical results. In both

T.
cases, ——2% ~11 (see Figures 10 and 11).

Te
However, the boundary layer thickness according to
the self-similar solution is over predicted (see Figure
12), since in the numerical solutions presented the
boundary layers are still within the strong interaction
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region and does not establish yet a self-similar

structure.
TW
/\ T 3 3 Mach 15

acLe
/ \ o 200,000
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VAR RS —————

€.ce T T T T T
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Figure 9. Pressure distribution in x-direction.
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Figure 10. Pressure, temperature and density.
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Figure 12. Streamwise velocity and enthalpy profiles.
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Figure 12. Temperature profiles.

Figure 13 presents the distribution of the
computed induced normalized pressure along the flat
plate at M., =152 and T, = 1300 K for three
different meshes. Figure 14 describes the transverse
distribution of the normalized density ratio at the
trailing edge of the plate for a various meshes. It can
be seen that the grid refinement results in numerical
solutions that tend to converge. The strong nonlinear
interaction between the shock wave and the
boundary layer is evident from these figures and
results in very high pressure close to the leading
edge of the plate.

80.00
. NORMALIZED SURFACE PRESSURE
DISTRIBUTIONS AT MACH 15.2

60.00 ] ~ 1= 50,J= 50

— 1= 70,J= 70

£ e I=100,J =100

‘M_,__,__“‘“_‘N
0.00 T T T T T T T
0.00E+0 2.00E-3 . 6.00E-3 8.00E-3
x (in)

Figure 13. Pressure distribution in x-direction.
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NORMALIZED DENSITY AT THE
TRAILING EDGE AT MACH 15.2

e = 50, J= 50
s | = 70, J= 70

1=100,J =100

0.50 1.00 2,50 3.00

P/Poe *°

Figure 14. Density distribution in y-direction.
CONCLUSIONS

The interactions between a shock wave and
a boundary layer, near the leading edge of a flat
plate, in supersonic and hypersonic viscous flow are
numerically investigated. The full two-dimensional
Navier-Stokes equations are solved by the explicit
finite-difference MacCormack's time marching
technique.

Solutions for the flow parameters such as
the boundary layer thickness, the pressure profile in
both directions (x and y directions), the streamwise
velocity profile and the temperature and density
distributions over a flat plate with constant surface
temperature are presented.

The numerical results are compared with
recent similarity solutions for supersonic laminar
boundary layers that use a general power law for the
viscosity-temperature relation. Nice agreement
between solutions is found at the trailing edge of the
plate. It secems, however, that a longer plate is
needed for the flow to establish a self-similar
structure as Mach number is increased.
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