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Abstract-Using a linear theory the dispersion relation of electrothermal waves in a seeded, partially 
ionized gas is derived. Two modes appear, one of which is always damped, while the other is unstable 
in certain plasma situations. This is the ionization instability and the growth rate has been calculated 
as a function of the steady state electron temperature, the angle between the steady state current 
density and the wave vector, the Hall parameter, and the instability wavelength. The dispersion 
relation differs from previous dispersion relations in that it is more complete, containing the effects 
of finite ionization-recombination rates, finite degree of ionization, radiation transfer, electron thermal 
conduction and the combination of both neutral and coulomb collisions. 

The results show that for fixed magnetic field the growth rate has a m a x i "  as a function of 
electron temperature, falling off at low temperatures due to the effects of finite ionization-recombi- 
nation rates, and at high temperatures due to the decreasing Hall parameter. However if the Hall 
parameter is kept constant by increasing the magnetic field the growth rate does not fall off until much 
higher temperatures where the seed becomes nearly fully ionized. Finally the possibility of stabilizing 
the waves using the damping effect of radiation transfer is discussed. 

1. INTRODUCTION 
IN A partially ionized gas, where the electron density (ne) is in Saha equilibrium at the 
electron temperature (T,), perturbations of the electron temperature will lead to 
large perturbations in the electron density. For a density of ionizable particles 
(12,) of 

This means that fluctuations in electron temperature will lead to fluctuations in 
the electron density which are ten times larger. These fluctndations can substantially 
alter the plasma parameters, such as conductivity and Hall parameter, and the energy 
balance in the plasma may be altered in such a way as to either damp or amplify the 
fluctuations. In addition the fluctuations can in general propagate as a wave. 

When the electrons are only weakly coupled thermally to the heavy particles 
(ions and neurraisj due to the large diEerence in mass, the heavy particie properties 
are approximately constant and these propagating fluctuations are called electro- 
thermal waves. 

In many plasma situations the waves are unstable and the source of the instability 
is the enhanced local ohmic heating in the regions of increased electron density. 
If the perturbations in the energy loss mechanisms (elastic losses to the heavy particles, 
radiation, convection and conduction) are unable to dissipate this excess heat, the 
electron temperature will rise leading, by ionization, to a further increase in the 
electron density and so the wave grows. 

Experimental observation of these instabilities has been reported by SHIPUK 
and PASHKIN (1968), ZUKOSKI and GILPIN (1967) and LOUIS (1968), while KEXRE- 
BROCK (1964), NEDOSPASOV (1966) and ZETTWOOG (1966) have analysed the waves 
and given expressions for the growth rates. 

One of the reasons that these waves are interesting is their effect on the performance 

rim3, the Saha equation gives a log n,/a log T, M 10 at T, = 2000°K. 
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of MHD generators. The working substance of closed loop MHD generators is 
usually a noble gas seeded with an alkali metal, and it is desirable to elevate the 
electron temperature above the rare gas temperature as much as possible to increase 
the electron density and hence the conductivity. Under these conditions electrothermal 
waves are possible. However, non-uniformities ir? the electron density and temperature 
in the generator will have a damaging effect on the performance. This is because the 
effective internal impedance is increased and the effective Hall parameter is decreased 
(ROSA, 1962), leading to a decrease in output and efficiency. It is therefore desirable 
to stabilize the fluctuations if possible. 

In addition to electrothermal waves another type of instability can occur in a 
partially ionized gas; the so-called magnetosonic instability. In the theory of these 
waves thermal coupling between the electrons and the heavy particles is assumed to 
be strong and all species are considered to have a common temperature. The heavy 
particle properties fluctuate in this wave and basically it is a sound wave which is 
amplified by j x B forces and ohmic heating. The growth rates of this instability 
have been calculated (MCCUNE, 1964; HEYWOOD et al., 1967) to be -103 l/sec, 
whereas growth rates for the electrothermal instabilities can be -lo6 l/sec. Hence 
the electrothermal instability is potentially much more dangerous as far as MHD 
generators are concerned. 

The object of this paper is first of all to derive a complete dispersion relation for 
small amplitude electrothermal waves, including all the relevant physics of the plasma 
(radiation, thermal conduction, finite ionization and recombination rates and the 
variation of all the plasma parameters with electron density and temperature) ; 
and secondly to solve the complicated dispersion relation numerically for the growth 
rate as a function of the steady state plasma parameters. From this analysis it is 
hoped 10 h d  the ranges of piasma parameiei~ (e~p~~cidlj i  &ciioii ieEPeia:uie) f G i  
which the waves are stable. 

The previous theoretical works on the subject of electrothermal waves have 
usually made simplifying assumptions such as infinite ionization rates, neglection 
of radiation, low degree of ionization etc. collision frequency constant with tempei- 
ature and density, and either neutral collisions dominant or coulomb collisions 
dominant; although Kerrebrock has a section with finite ionization rates, and Neda- 
spasov includes a finite degree of ionization. The expressions they derive, however, 
8is still i ~ ~ i i l l j k t e  yet faiib complicated and it is difficult to ebtzin 8 clear picture 
of how the growth rate varies with different plasma situations. It is hoped that plot- 
ting graphs of the growth rate against the plasma parameters leads to greater clarity. 

It is expected that the effect of h i t e  ionization rates will be to damp the waves at 
low temperatures. If we look at the equation for change of electron density using 
the collisional-radiative theory (HINNOV et al., 1962; BATES et al., 1962a, b) for the 
recombination coefficient and assuming that the equilibrium state is Saha equilibrium 
at the electron temperature we have 

3% - = A,n,(n, - n,) - A,n,3 
at 

where 
m6 
sec A, = 1.1 x x TY9j2 - 
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and 
2nm,kTe 

AI = (7) exp (- 2) A, 

and VI = ionization potential of the seed. 
Supposing that we have a perturbation n,' in the electron density, we can then 

find the characteristic time it takes for the equilibrium to be re-established in the 
absence of destabilising effects. Linearizing with respect to e, the equation Secomes 

_-  an; 
at 

2 2% - ne0 

[ a ,  - ,,,I - -niA2nS0 

(where dashes represent perturbed quantities and zero subscripts represent steady 
state quantities). Hence for ns > ne, we have 

where 
1 

2n,2A2 ' 
Ts = - 

Physically it seems likely that the relaxation rate 1 1 ~ ~  is an upper limit to the 
growth rate of an electrothermal instability. Since 1 1 ~ ~  decreases rapidly with electron 
temperature, this ought to have a significant damping effect on the waves at low 
temperatures, but a negligible effect at high temperatures. 

The results of our calculations show the existence of this damping effect at low 
temperatures. 

Tiie coiisionai-radiative ionization theory should give a good approximation to 
the behaviour of the plasma at the electron densities and temperatures considered. 
However recent papers (SHAW et al., 1966; SURDO, 1967) have thrown doubt on the 
assumption that the equilibrium state is in Saha equilibrium at the electron tem- 
perature. They indicate that the electron density in the steady state may be reduced 
below the Saha level. With no other analytic expression for the equilibrium state 
available, Saha's equation has been used for the zero-order equilibrium. The effect 
of a reduced electron density at equilibrium is equivalent to reducing the ionization 
rate, znd hence xi11 teiid to stabiiize the decirothermai waves. Using Saha equiiibrium 
for the steady state therefore gives an upper limit for the growth rate. 

Since the instabilities are dependent on the partially ionized nature of the caesium 
seed it is expected that when the seed becomes almost fully ionized the instabilities 
will die away. The important parameter here is a log n,/a log T, which from Fig. 
1 N 10 at about 2000°K for caesium and decreases with temperature. Unfortunately 
a log n,/a log T, does not decrease to below 1 until T,, > 5000°K, and because of 
this the damping effect of a finite degree of ionization does not appear until this 
temperature. 

In fact however we find that for fixed magnetic field (-1 -+ 10 tesla) the growth 
rate reaches a maximum and falls off with increasing temperature well below 5000°K. 
This is due to the value of Hall parameter (Po) decreasing below a critical value of 
the order of 1, which causes the ohmic heating to fall below the energy losses in the 
wave. 
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The radiation term used in the calculations is that derived by LUTZ (1967). The 
basic assumption is that the first doublet excitation level of the caesium seed atoms, 
which dominates the radiation energy losses, is populated at L.T.E. with respect to 
the electron gas; i.e. we assume that the level is populated by inelastic collisions 
with electrons, and radiative excitations and de-excitations play only a small role. 
Due to the large self absorption which increases the effective lifetime of an excited 
state, and the high electron densities this is a good approximation in our plasmas. 

Although the photons in the plasma play a small role in determining the popu- 
lation densities of the excited levels they play an important role in damping a sinu- 
soidal instability by transferring energy from the peaks to the troughs. By increasing 
the radiation damping in the wave it is theoretically possible that under a wide range 
of conditions stability can be achieved. 

2. BASIC EQUATIONS 

Assumptions 
We make the following assumptions about the state of the four component 

(electrons, seed ions, seed atoms and neutral buffer atoms) plasma:- 
(1) The electrons have a MaxweIlian distribution in velocity space. 
(2) The electron number density ne and the ion number density ni are equal. 
This is not strictly true of course since space charge electric fields exist as a result 

of the fluctuations. However the difference in electron and ion number densities 
required to produce these fields is very small compared to the fluctuation amplitudes 
of the two densities. This can be seen as follows. Poisson’s equation for the perturbed 
state is 

2n-E’ (q’ - n,‘)e V.E‘-J-Y 
i? EO 

where A = fluctuation wavelength, and the linearized Ohm’s law equations (2) and 
(7) gives E’/Eo - n,‘/neO. 

my E, = lo4 Vim, and 
ne, = 3 x 1020 m-3 say, we have n,’ - n,’ - IO-%,’. 

Hence (ni‘ - n,’) - 2n-~~E,n,’/eAn~,, and for il = 

(3) The heavy particles have the same temperature, i.e. 

Ti = T, = T, = T,  but T, # T. 
The equality of the ion, seed and neutral temperatures follows from their approxi- 

mately equal mass. The thermal coupling between them is strong, while the much 
lighter electrons are partially uncoupled thermally from the other components. 

(4) The heavy particles have the same centre of mass velocity, i.e. vi = 8, = 
v, = v, i.e. no ion or seed slip. 

( 5 )  T, v, n, and n, are all constant in space and time. 
We assume therefore that the steady state is ‘uniform’ i.e. that L > 3, where L = 

characteristic length over which the steady state variables change. Furthermore we 
assume that the heavy particles do not participate in the waves. This is equivalent 
to assuming that the characteristic times of the waves (period and growth time) 
are so small that the heavy particles do not have time to move; and also that the 
thermal capacity of the heavy particles is such that the fluctuations in Tare negligible. 

(6)  The magnetic field, B = (0, 0, B) ,  is constant in space and time, i.e. zero 
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Reynold’s number. This is a good approximation for the characteristic conduc- 
tivities, wavelengths and velocities in MHD generators. To compare B* = B‘/Bo 
(quantities with the superscript*, equal to the ratio of the perturbed to the steady 
state value, we call the fluctuation) with ne* =ne’/neo for instance, we have V x B‘l 
po - 2.rrB’/p0A -j ’ . From the linearization of Ohm’s Law we have j’ -jOne* - 
rsvBn,* and hence 2rB” - (avpo?Jne*. For Q = 1 mhojm, v = 103m/sec and 
3, = 10”m we have B* - 

Under these approximations the plasma state is described by three electron 
equations (density, momentum and energy), and two field equations. 

In the heavy particle frame of reference, i.e. v = 0, these are given below in 
rationalised M.K.S. units. 

ne*. 

Electron density 
This is equation (1) given above. 

Electron momentum (Ohm’s Law) 
The two components of Ohm’s Law perpendicular to the magnetic field are:- 

- 

VPe where F = E + - , 
nee 

~e = nekre, 
nee2 

c j -= - ,  
MeV 

Be j=-* 
mev 

The total collision frequency v of the electrons is the sum of the Coulomb collision 
frequency v , , ~  and the binary collision frequency vB with ions and neutrals respectively. 
i.e. v = Y , , ~  + vB 
where 

and (OVCHARENKO, 1969) 

qe, = 16.0 + 5.5 x 10-3(~, - 2000)l x I O - 2 ~ .  
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Electron energy equation 

m,? an, 
eVI - R + V(KVT,) (3)  4- "7 m, - - 2t 

where the internal energy density is given by 

and the thermal conductivity by 
U, = 3/2nekT, 

nek2Te 512 
K = - -  

m,v 1 + / 2 '  

The radiation in the plasma is dominaied by the lowest order caesium doublet 
(62S1/2 - 62P1/2, 62S1/2 - 62P3,2). Since the absorption length of this resonance 
radiation is small compared to the dimensions of most plasmas under consideration 
the radiation is largely trapped. Using the expression derived by LUTZ (1967) for 
an infinite plasma we have 

X I p i m ? '  (1 + 5) dm, x l$ x [lm Bi(t) exp (-m,z(t -U)) dt 
2mpi 

+ Bi( t )  exp (-nz,z(y - t)) dt . . --m 11 
The summation is over the two resonance lines, and 

The fhst term represents emission from the volume element and the second two 
represent absorption from the rest of the plasma. It is assumed that the population 
density nat of each excited state is dominated by collisional excitation and de-excitation 
so that 

and 

i 

i.e. naQ = n a / l  + exp (- 3) . 
kTe 



817 Analysis of the nature and growth of electrothermal waves 

The dominant absorption line broadening mechanism is Van der Waals broadening 
by the neutral atoms. The values of Ai, gEi, and T~ used are those given by CORLISS 
and OZMAN (1962), and pi is calculated from a formula given by GRIEM (1964). 

Charge conservation equation 

using assumption (1). 
v . j = o  

Faraday's Law 

using assumption (6) .  
V X E = O  

(4) 

This is a set of 6 equations in the 6 unknowns Ex, E,, jx, j,, n, and T,. Boundaries 
will normally give some sort of condition on E and j; for instance a circuit equation. 

Here we make the assumption that the plasma is infinite and plane wave solutions 
are applicable to the f i s t  order perturbation of the above set of equations. This 
enables us to eliminate E and one component of j from the equations while reducing 
their number to three. 

3. ZERO ORDER EQUATIONS 
The steady state of the plasma is assumed to be uniform and the first three equations 

reduce to:- 
n E o  , A ,  - =- 

' 8  - ' E o  A ,  
i.e. we assume that Saha equilibrium holds in the steady state electron momentum 
(Ohm's Law): 

electron energy : 
- 2  

10 - - - 3nE,k(T,, - T )  !!!! + VBO - 
00 m, m*J 

i.e. the ohmic heating is transferred from the electrons to the heavy particles. The 
radiation transfer term is zero in the steady state (evaluation of the integrals in R 
for a uniform plasma easily demonstrates this) since each part of the plasma is 
absorbing as much as it emits. For a finite plasma, however, the limits of the integral 
would be different and R would be non zero. Physically this means we have radiation 
escaping from a finite plasma; however, for the resonance radiation the absorption 
length (typicaIIy N lo-%) is very much smaller than the dimensions of most MHD 
laboratory plasmas and the radiation escape is small compared to the elastic loss 
to the heavy particles, We assume therefore that the steady state of our inh i te  plasma 
model is a good approximation to that in a finite plasma. 

Note that strictly speaking OUT assumptions of a uniform steady state and ohmic 
heating of the heavy particles through the equipartition term are incompatible. 
The heavy particles must get rid of the energy either by convection or conduction, 
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or both. The implicit assumption therefore is that the velocity of convection or the 
thermal conductivity is large enough for the condition L 9 1 to hold, and also the 
heavy particle background should remain in a uniform state during the times of 
interest of the electrothermal wave. 

4. FIRST ORDER EQUATIONS 
Equation (1) linearizes in a straightforward manner to the form 

an, * -- - aoT,* + bone* 
at 

where 

and 

a, = bTei9I2ne,2 312 + - ( 
The linearization of equation (2) is more complicated, and involves equations (4) 

and ( 5 ) .  Assuming plane wave solutions with the wave vector defining the y-direc- 
tion (i.e. all perturbed quantities are proportional to exp (iwt - X y ) ) ,  we have 

hence from equation (4) we have 
alax, alaz _= o 

ajy' 
ay 
- = 0 i.e. j,' = 0 

- I ,m aiid thedore 3' = (j,', 0, 0). Similarly equation (j j  gives ~fi,./~y = 6 i.e. = 0 
and therefore F,' = 0. Now we can linearise equation (2) to obtain F,' in terms of 
d and /?', and substitute for F,' in j,'. Thus we arrive at 

2 [ P O F X O  4- FYOI. 
P'UO 

1 +- Bo 
j,' = dFZO - - 

Using o(Te, ne) and / (Te ,  ne) as defined above, we further reduce the Ohm's Law to 

where 
(j, x K) . B' 

joKB ' 
E = sin-l 

Linearising the energy equation completes the first order set of three equations 
in n;, T,' and j,'. Using equation (7) we can eliminate jzr  from the energy equation 
which becomes, 
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where 
CO = (3/2kTeo + eY')n,, 
h, = 3/2ne,kTe, 

fo= -i 
3/2kTe,Kjo cos CI 

e 

819 

and 

1 $ - - m a  2'' 1 * [ ( 1- -  'y:) sin a + po cos cI 
ikTe&jo cos K do = 

e 00  

where Ecou10 = energy loss due to elastic collisions with the ions and 6, = energy 
loss due to  elastic collisions with all the heavy particles. 

Here we have substituted -iK for spy. Substituting iw for a/& in (6) and (8) 
we get two equations of the form 

iw - bo 
iwc, - do ioh, -fo 

Hence we get a dispersion relation for the electrothermal waves of the form 

I" - bo --a, det ( ) =o.  
iwc, - do iwh, - fo 

This gives us a quadratic in w with coefficients which are complicated functions 
of Teo, a,  Po and K. We have solved this quadratic numerically and have plotted the 
frequencies and growth rates of the electrothermal waves as a function of these four 
parameteis. 

5 .  RESULTS 

(a) Procedure of calculations 
The dispersion relation has been solved numerically on the IBM 7094 at Imperial 

College. In  most of the calculations the plasma considered was an argon gas seeded 
with caesium (the results for this mixture are shown in Figs. 1-17); however, some 
calculations were also carried out for argon and potassium, helium and potassium, 
and helium and caesium (results shown in Fig. 18). In all cases the neutral gas has 
a number density of loz5 particles/m3 and the seed fraction is 0-001. 

The calculations were carried out with the heavy particle temperature (TI usually 
fixed at 1500°K and the variations of Teo and B were made to correspond as closely 
as possible to experimentally realisable situations. For instance T,, was varied for 
fixed B ( K  and K also fixed); this corresponds to increasing the internal Ohmic 
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dissipation in an MHD generator by decreasing the external load. Of course in an 
experiment this would also cause T to rise slightly, the magnitude of the rise 
depending on the energy loss mechanisms for the heavy gas. Assuming the conse- 
quent rise in T to be small its effect on the growth rate, g, will be small (since g is 
roughly proportional to the Ohmic heating,j,2/oo, whichis proportional to (Teo - T) )  ; 
and even if the rise is not small it will not qualitatively affect the way in which g 
varies with Teo (i.e. the maximum of d as a function of Te0 and the stability at high 
values of Te0 will still be present). 

T,, was also vaned by varying T keeping all other parameters constant including 
the Ohmic heating. 

These two methods of varying Te0 have B constant, and for completeness another 
method of varying T,, was tried. This consists of keeping the external load and T 
constant but varying the amount of magnetically induced elevation of Teo by varying 
B. In this case a load factor 0.75 and a gas velocity relative to the magnetic field of 
lo3 m/sec were used. 

As previously stated, the variation of g with Teo turns out to be qualitatively the 
same in the fist  two cases, giving a maximum of g with respect to Te0 at 2500°K; 
however in the third case g increases with T,, through 2500 and does not start to 
decrease until T,,, is approximately 5000°K. 

(b) Wave modes 
Since the dispersion relation is a quadratic its solution gives two independent 

modes for electrothermal waves. Essentially they are a high frequency mode, which 
is always severely damped, and a low frequency mode which is unstable under certain 
conditions (see Figs. 1 and 4). In the graphs and in the rest of this paper the high 

aiid the ioii;za~;on 
mode respectively). 

low ficq-uefiey &elred io as the f.& iheriiia. 

If we define the parameters p and 8 by 

p exp (+io) = ne*/Te*. 

We can see from Fig. 2 that at T,, = 2500"K, p < 1 for the fast thermal mode, 
while p N 10 for the ionization mode; also from Fig. 3 we see that 8 w 7~ for the 
f a t  thermal mode and 8 w 0 for the ionization mode. At temperatures lower than 
2500°K Fig. 7 shews that 8 fc: the io~izztio:: node is w --7: ever a range ofvahxs of 
tc where the mode is damped (see Fig. 5). This is due to the finite ionization-recom- 
bination rates being a limiting factor at these temperatures, and we will discuss this 
in more detail in the next section. 

For both modes the values of all wave parameters for a and U + 7~ are identical, 
except for the phase velocity and 8 ,  which both change sign. That is, given an orienta- 
tion of the wave front defined by a ,  the waves travel in one direction only. For this 
reason quantities plotted as a function of CI are plotted in the range 1x1 < 7~/2 only. 

At temperatures below 4650°K the fast thermal and the ionization modes travel 
in opposite directions, the former has a positive phase velocity for la1 > 7r/2 and the 
latter has a positive phase velocity for 1x1 < ~ / 2 .  That is the fast thermal mode 
travels in the same sense as the electrons while the ionization mode travels in the 
opposite sense. However, above 4650°K the phase velocity of the ionization mode 
reverses (see Fig. 16); the physical reason for this will be explained in Section 5(g). 
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7 1  i q r  \sec) 

0 20 40 60 80 
K (&$ - 

FIG. 1.-Graph of the modulus of the real part of o vs. wave number. (1) Fast thermal 
mode; (2) Ionization mode. For both curves:--T,, = 2500"K, T = 1500"K, a = ~ / 4 ,  

B = 5.0 tesla. 

f 
e 

82 2 

( I &  
0 , 
-n12 -m 0 314 rr/2 

a.--) 
FIG. 2.-Graph of mod (%*ITe*) vs. ti (1) Fast thermal mode; (2) Ionization mode. 

For both curves:-Teo = 2500"K, T = 15OO"K, B = 5.0 tesla, 1 = 1 cm. 

(c) Dependence of the instability on U 
The parameters g, p, 0 and w,/K for the ionization mode are plotted as functions 

of M .  in the interval -n/2 n/2 for various values of T,, in Figs. 5 ,  6 , 7  and 8 respec- 
tively, These curves have constant magnetic field (5  tesla) and it can be seen from 
Fig. 5 that for low temperatures ( <30OO0K) there is growth in a range of angles centred 
about U w r/4. This a-dependence of g is in sharp contrast to that given by KERRE- 
BROCK (1964). He predicted that if G( = r + E then the growth rate tends to +CO 

as E 3 0 through +ve values, and it tends to - 00 as E +. 0 through -ve values. 
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T 
0 ( r a d  ia ns) 

I 

i 
I 

-n/2 - R / 4  0 nlf, nl2 
a- 

FIG. 3 . 4 r a p h  of arg (n,*/T,*) vs. a. (1) Fast thermal mode; (2) ionization mode. 
For both curves:--Tco = 2500"K, T = 1500"K, B = 5.0 tesla, A = 1 cm. (Note 0 scale.) 

T 1  
g (sec) 

5 3x10 

0 20 LO ,60 80 
K (ml+ 

FIG. 4.-Graph of growth rate vs. wave number. (1) Fast thermal mode (2) ionization 
mode. For both curves:--Teo = 2500°K, T = 1500"K, a = ~ / 4 ,  B = 5.0 tesla. 

(Note difference in scale above and below the zero axis.) 
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I o5 
0 

6 -2x10 

-n/2 -14 0 n/4 Ti2  
a- 

FIG. 5.-Graph of growth rate vs. E (ionization mode). (1) T,, = 2000°K; (2) T,, = 
2250°K; (3) Te0 = 2500°K; (4) Ta0 = 4000°K; ( 5 )  T,, = 5500°K. For all curves:- 
T = 1500"K, I.  = 1 cm B = 5.0 tesla (note different scale above and below zero axis). 

f 
? 3  
IO r 

102 

10 

10 -' L 
-V!2 -m 0 n!4 nl2 

a 9  

FIG. 6.-Graph of mod (n,*/To*) vs. a (ionization mode). (1) T,, = 2000°K; (2) T,, = 
2250°K; (3) T,, = 2500°K; (4) T,, = 4000°K; (5) T,, = 5500°K. For all curves:- 

T = 1500"K, 1 = 1 cm, B = 5.0 tesla. 

823 
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? 
0 (rad ia n s) 

-TI2 -VJ4 0 TJ4 nI2 
a* 

FIG. 7.-Graph of arg (n,*/Te*) vs. o! (ionization mode). (1) T,, = 2000°K; (2) T,, = 
2250°K; (3) T,, = 2500°K; (4) T,, = 4000°K; (5) T,, = 5500°K. For all curves:- 

T = 1500"K, 1 = 1 cm, B = 5.0 tesla. 

FIG. &-Graph of phase velocity (wn/K) vs. a (ionization mode). (1) T,, = 2COO"K; 
(2) T,, = 2250°K; (3) T,, = 2500°K; (4) T,, = 4000°K; (5) T,, = 5500°K. For all 
curves:-T = 1500'K. 3, = 1 cm, B = 5.0 tesla. (Note different scale above and 

below zero axis.) 
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We think that Kerrebrock's a-dependence is due to an error in his equation (40) 
where the (K,/K)2 factor should be (Kz/K)2. 

The a-dependence given here is in agreement with a remark by ZETTWQOG (1966) 
and also with the experimental results of SHIPUK and PMHKIN (1968) and ZUKQSKI 
and GILPIN (1967). 

From Fig. 6 we see that p is not a constant with CI as it should be if ne* and T,* 
were related to each other through the Saha equilibrium equation. Above 2500°K 
the approximation beccrnes a good me, but below 2500°K it is not. At 25GG"K 
the value of a log neo/a log Teo from the Saha equation is approximately 10.5 and we 
see that p equals this value only at g = 0. This we would expect since the period of 
the ionization mode is secs and the Saha relaxation time is much less than this 
for Z0 = 2500'K. However, when the wave is growing the growth rate is of the order 
of the Saha relaxation time and the rate of change of the electron density perturbation 
is limited by the finite ionization and hence the rise in Te* gets ahead of the rise in 
ne* making p fall below a log neo/a log reo. Similarly, when the wave is damped the 
rate of decrease of ne* is limited by the h i t e  recombination rate and the fall in Te* 
gets ahead of the fall in ne* and p rises above a log neo/a log T,. At lower temperatures 
the rise and fall of p above and below a log neo/a log Teo is increased because of 
decreasing ionization and recombination rates, but in the stable range of ct a new 
effect appears. The ionization mode becomes similar to the fast thermal mode in that 
8 falls to -r, and the effect of this is to take a large 'bite' out of the rise in p leaving 
two spikes on the edge of the stable range. Figure 7 clearly shows that as the tem- 
perature rises the range of a over which 8 = -r decreases, the size of the 'bite' 
decreases and the spikes converge. 

From Fig. 8 we see that the phase speed lo,/Kl maximises at a w 0 except at 
lower temperatures, and at aii temperatures wJK = 0 ar a = &+. 
(d) Dependence of the instability on 1 

The dependence of the growth rate on Po is now well known from experimental 
observations (SHIPUK et al., 1968; ZUKOSKI et al., 1967). The results derived here 
confirm that the growth rate increases with increasing Po and that beIow a value of 
Bo N 1 it is negative (see Fig. 9); also the temperature dependence of the value of 
Is, at wEch the instabil;ty starts (/?oOCRiT), shown in Fig. 10 is s i d a r  to that previondy 
reported (ANGKOLSV et d., 1968; SEFUK et e?., 1968). 

The range of a over which we have instability (Act) is plotted in Fig. 11 as a 
function of Bo at Teo = 2500°K. AM increases with increasing Bo and could explain 
why in some experiments (SHLPUK et al., 1968) the initially plane wave instability 
breaks down into random turbulence as Bo is increased. This could be due to two or 
more Fourier components of the initial disturbance oriented in different directions 
being successiveIy de-stabilized by the increasing range A&; i.e. lkst one component 
is destabilized giving plane wave fluctuations and then Act increases to include the 
other(s) giving, along with the first one, apparently random fluctuations. 

(e) The growth rate as a function ofTe0 

in Fig. 12 curve 1 for T = 1500"K, B = 5.0 tesla, b = 1 cm and a w ~ / 4 .  
The growth rate as a function of the steady state electron temperature is shown 

The growth rate shows a maximum with electron temperature at Teo m 2500°K 
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FIG. 9.-Graph of growth rate vs. Hall parameter (ionization mode). (1) Te0 = 2000°K; 

T,, = 5000°K. For all curves T = 1500"K, 2. = 1 cm, E = 4 4 .  
(2) Teo = 2250°K; (3) Teo = 2500°K; (4) Teo 3500°K; ( 5 )  TEo = 4500°K; (6) 

'I 
0 I 
2000 3 000 LOO0 

1, (" K) + 
FIG. 10.-Graph of critical Hall parameter for stability vs. electron temperature 

(ionization mode). T = 1500"K, 3, = 1 cm, E = 7114. 
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FIG. 11.-Graph of range of angles for instability vs. Hall parameter (ionization mode). 
Tea = 2500°K, T = 1500"K, A = 1 cm. 

FIG. 12.-(A) Graph of growth rate vs. electron temperature (ionization mode). 
(1) B = 5.0 tesla; (2) pa = 5.0; (3) Magnetically induced elevated electron temperature 
(7 = 0.75, V = IO3 mlsec). For all three curves:-T = 1500"K, a. = 7i/4,1= 1 cm. 
(B) Graph of Hall parameter vs. electron temperature. (4) B = 5.0 tesla (right hand 

scale). 

821 

3 



828 A. H. NELSON and M. G. HAINES 

and at higher temperatures, above approximately 3000"K, the waves are damped. 
The reason for the decrease of g towards lower temperatures is partly due to the 

decreasing value of Teo - T. Sincej:/o, cc (Teo - T )  and (j2/o)' K j:/oo, decreasing 
Teo - Tmeans decreasing (j2/o)' and therefore the growth rate falls off. However if we 
were to decrease T keeping Teo - T constant g will still decrease with decreasing T,,. 
(see Fig. 13 curve 1). This is due to the decrease in the ionization and recombination 
rates at lower temperatures. The growth rate is limited here by the rate at which the 
seed can ioiiize. This can be seen by ccmparing curves 1 and 2 in Fig. 13. IC curve 

t 1  
9 (sc, 
5 

10 

4 
5x1 0 

0 
1500 2000 2800 

T,, (OK) + 
FIG. 13.-Graph of growth rate vs. electron temperature with constant (ionization mode). 
(I) b = 1.1 x For both curves:--T,, - T = 300"K, cz = n/4, 

1 = 1 cm, B = 5.0 tesla. 

2 we have arbitrarily multiplied the ionization and recombination coefficient by a 
factor IO5. The growth rate does not decrease in curve 2 till 1800°K; we conclude 
therefore that the infinite ionization and recombination rate approximation over- 
estimates the growth rate for temperatures below 2500°K but gives a good approxi- 
mation for temperatures above 2500°K. 

The growth rate, g, decreases as Teo increases past 2500°K in Fig. 12 curve 1 
not because of the increasing degree of ionization, but because Bo decreases at fixed 
B due to yo increasing with temperature. This can be seen from curves 2 and 4 on 
Fig. 12: curve 4 is Bo vs. Teo and ,Bo N 1 when the wave becomes stable; curve 2 shows 
g vs. Too with ,B = 5, i.e. B increasing with Teo, and here g shows no maximum with 
Teo in the plotted range. For ,B = 5 the growth rate does not start to fall off due to 
the large degree of ionization until T,, w 5000°K (see Fig. 14 curve 1). At temperatures 
above 5000°K the value of a for maximum g (amax.) shifts towards ~ / 2 .  This is due 
to the decreasing value of p and therefore the Ohmic heating becomes dominated by 
the Te* terms and the approximate sin 2cr dependence of the growth rate (see Section 
5(g)) changes to sin2 CI. 

(2) b = 10-15. 
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FIG. 14.-Growth rate vs. electron temperature (ionization mode). (1) Bo = 5.0; 
(2) Magnetically induced elevated electron temperature (7 = 0.75, V = l o 3  misec). 

For both curves:--T = 1500"K, 3. = 1 cm, c( = ~ / 4 .  

If instead we increase Teo by increasing B to produce more magnetically induced 
nonequilibrium ionization with k e d  load factor in an ideal Faraday mode generator, 
wherej, = o0viqi - qj, then g as a function of Tao is shown in Fig. 12 curve 3. 
The growth rate increases monotonically for the values of reo plotted. This is because, 
for k e d  load factor 1?(= rL]rL + rp) the value of B required to produc, an electron 
temperature Teo in the steady state is given by 

-1-,- 

for nz, < m, the temperature dependence of Po can be seen from 

Therefore bo increases with temperature and the growth rate increases with it. 
However at higher temperatures the finite degree of ionization limits the wave and 
the growth rate falls to zero (see Fig. 14 curve 2).  

Close comparison of these results with experiment is not yet possible. This is 
because experiments to date observe the existence of fluctuations in electron density 
in the plasma but do not determine the growth rate of these fluctuations. It is possible 
of course that the dependence of the growth rate on the electron temperature could 
be inferred from the fluctuation amplitude at a fixed point in the plasma for various 
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temperatures. However this assumes two things; firstly that the initial perturbation 
is independent of the electron temperature, or varies with it in some known way; 
and secondly that the fluctuations do not reach some steady non-linear amplitude 
before reaching the point of observation. 

(f) Dependence of the instabizity on K 
Figure 2 shows the dependence of the real part of CO, on K for CI = +, re,, = 

25WK, and B = 5.0 tesla. The dispersion curve is a straight line through the 

5 
2x1 0 

105 

0 
0 1 2 

FIG. K-Growth rate vs. wavelength (ionization mode). (1) I",, = 2000°K; (2)  T,, = 
2500'K; (3) T,, = 3000°K. For all curves:--T = 1500"K, c( = ~ / 4 ,  B = 5.0 tesla. 

origin therefore both the phase velocity (o,/K) and the group velocity (dco,/dK) are 
independent of K. 

The imaginary part of co(g = -coI) ,  however, varies with K, and we see from 
Fig. 15 that, for various temperatures, the growth rate decreases, as expected, when 
Jb, the wavelength, decreases. This is due mainly to the thermal conduction losses 
which vary as l/i?, and also to a lesser degree to the radiation term which varies 
as 1/2/R. 

We note that the elevated electron temperature steady state is unstable for infinite 
wavelength. However, we have imposed no finite length boundary conditions on 
the electron temperature, and more important on j', and so in practice a characteristic 
length of the system would place a limit on the wavelength. 

(g) Physical nature of the wat'es 
The development of a physical picture of the waves, how they move and how they 

grow, is of considerable interest; but the interplay of the physical mechanisms in 
the wave is obscured by the number and complexity of the terms, especially in the 

h (c ml- 
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energy equation. However, if we assume that n," and T," are sinusoidal in space 
then we can describe briefly the way in which the electrons move in the fluctuations 
and the mechanism by which the fluctuations themselves move. 

In any sinusoidal fluctuation ne* it follows from the zero longitudinal component 
of the current (V . j' = 0) that the fluctuation in the magnitude of the longitudinal 
electron drift velocity is given by /u,I * = -E,*. Therefore the electrons stream through 
the fluctuation with decreased velocity in the peaks of n," and increased velocity in 
the troughs of n,*. The fluctuation itself does not tend to convect with the electrons 
since the assumption that n, = n, would require the ions to move with the wave which 
is incompatible with our assumption of stationary ions. 

The mechanism of movement of the waves is, in fact, an inequality of the heating 
in the different slopes of a sinusoidal wave. The terms contributing to this are of 
course the gradient terms in equation (3)) the energy equation. The other terms are 
in phase with either ne* or T,*, which, we have seen, usually have a phase difference 
either of nearly zero (I.M.) or of nearly n(F.T.M.), and contribute only to the growth 
or decay of the wave. 

When equation (3) is linearised we obtain two gradient terms, viz. -3/2 kj,,/e 
a T,'/ay, i.e. convection of hot electrons, and kT,, jO,/neOe an,'/ay, i.e. compressional 
heating. 

For the Ionization Mode in most of the temperature regime investigated here, 
n5* 9 T,"; therefore compressional heating is the dominant effect. The electrons 
are heated as they stream into the peaks of n,", which correspond almost exactly 
to the peaks of T,", and cooled as they leave the peaks of ne"; therefore the sinusoidal 
wave has an inequality in aT,"/at which causes the wave to move in a direction oppo- 
site to that of the steady state electron drift. 

However, at higher temperatures where a log n,/a log T, -+ 0, we can have the 
situation in the ionization mode where T,* > n,", and the convection ofhot electrons 
dominates. The direction of the wave movement is reversed since the convection 
heats the electrons where they are leaving the peaks and cools them where they are 
entering the peaks. The reversal of the phase velocity should occur when the effect 
of compressional heating and the convection of hot electrons are equal in magnitude. 
This occurs when a log n,/a log T, = 312, i.e. when T,, = 4650°K for n, = loz2 l/m3. 
Comparison with Fig. 18 shows this to be the correct temperature for the reversal of 
the phase velocity. 

The phase velocity is also zero when U = i n / 2 ,  since then both gradient terms 
are zero (see Fig. 8). 

Physically the source of the instability is the enhanced Ohmic heating in the peaks 
of ne* and T,". However, without a magnetic field, the perturbations of the elastic 
loss to the heavy particles is greater than the perturbation of the Ohmic heating, 
and the wave is damped. The effect of a magnetic field is to increase the fluctuations 
in the current, and hence the Ohmic heating, for a given n," and T,*, until, for 
Po - 1, the perturbed Ohmic heating becomes larger than the sum of perturbed elastic 
aad other losses, and therefore the wave grows. 

drift 
currents and the fluctuations of the hall psrameter. The linearisation of the Ohm's law 
gives, j l z  =j,[o+ sin CI .+ (5% - ,!?*)Bo cos U]. Therefore for BO > Bocrit we can 

The extra components of j' due to the magnetic field come from F' X 

writej$' ~ j , ( u *  - e*, Po cos U, 
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FIG. 1 6 . 4 r a p h  of phase velocity vs. electron temperature (ionization mode). T = 
1500”K, 1 = 1 cm, a = 4 4 ,  €3 = 5.0 tesla. 

5 2 4  0 

0 
1500 

FIG. l7.-Graph of growth rate vs. electron temperature (ionization mode). (1) with 
normal radiation term for the caesium resonance lines; (2) with radiation term = 10 
times caesium radiation. For both curves T = 1500”K, a = n/4, B = 5.0 tesla, 

3, = 1 cm. 

Now the perturbation of the Ohmic heating is given by 

2j0j,’ sin cc - 1 7  

GO CO 
G*. - - 

The positive part of this is of course the source of the instability and substituting 
for j,’ give a source term cc sin 2a, i.e. we expect the growth rate to maximise at 
a = n/4, 5n/4 which is in accordance with the results of the calculations. The reason 
for this, then, is that magnetically induced components of],’ maximise at a = 0, 
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while, for a givenj,', the Ohmic heating maximises at c( = 7712, so the maximum of 
the growth rate is a compromise between the two. Also at lower values of Bo where 
the ionization is damped the sin cc term ofj,' begins to dominate and the maximum 
of the growth rate, although it is negative, tends towards E =  ~ / 2  (see Fig. 5 ) .  

(h) Radiation fransfer 
The foregoing results in general c o d r m  the well known fact that the growth rate 

decreases with decreasing Bo and for Bo < ,boCRIT the fluctuations are damped. 
The undesirable effects of the instability could then be avoided by choosing experi- 

mental conditions such that j3, < &s,,RIT. In the case of an MHD generator, since the 
power density is proportional to B2, then the higher the magnetic field the higher will 
be the output. Imposing the condition Is, < ,80c,IT is therefore an unsatisfactory way 
of avoiding fluctuations. We must therefore consider ways of damping the waves 
other than keeping Bo as low as possible, which corresponds to keeping the perturbed 
Ohmic heating in the wave less than the losses. One method of doing this would be 
to try and increase the radiative energy transfer to cancel the Ohmic heating. The 
effect of arbitrarily increasing the radiation term for the caesium resonance lines by 
a factor of 10 is shown in Fig. 17. Curve (1) is g plotted against T,, using the normal 
radiation term and curve (2) is g plotted against T,, with the arbitrarily enhanced 
radiation. We conclude that if we can increase the radiation by an order of magnitude 
a substantial damping effect will be produced. Let us consider the radiation term in 
more detail. For the ith line the perturbation of the radiation transfer is exactly 
given by 

R !  = 

where 

Assuming v1 = v2, R.H.S. maximises at hv,lkT, M 2.7, and the maximum value w 
1.0. At T,, = 2000°K hv,/kT,, M 8.5 for the caesium doublet and the R.H.S. has 
a value M 0.1. The radiation would be increased by a factor of 10 therefore if we 
could 'dope' the plasma up to the seed density with an element whose resonance 
line corresponds to hv,/kTe0 = 2.7. (Note that the values of 7,, Ayi, and gEi do not 
change a great deal for atomic levels and they appear under a square root sign. 
Therefore maximising the radiation w.r.t. hv1/kTeo is equivalent to maximising it 
with respect to the indentity of the radiating element). However the wavelength 
corresponding to this value of hv,/kT,, at 2000°K is -20,000 h;, i.e. in the infrared; 
and resonance lines have much shorter wavelengths than this. It is unlikely therefore 
that the radiation can be substantially increased by optidsing vP 
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Alternatively we could attempt to increase the radiation by increasing the number 
of radiating atoms. However, this may have undesirable chemical effects as well 
as increasing the internal plasma impedance by inelastic collisions; therefore the 
doping of the plasma may have to be kept to a minimum. If we increase the caesium 
density by a factor N say then the radiation increases by only a factor 2/(N).  This 
is because the absorption is increased as well as the enission being increased; also 
the electron density will be increased by a factor N ,  which, in the lower temperatures 
where coulomb collisions are not so important, wi!! increase the Ohmic heating by a 
factor of N ,  while the radiation damping increases by only a factor of d N .  However 
if, say, we add N - 1 other elements, all distinct, with doublet resonance lines that 
have vi of the order of that for caesium, but which do not overlap even after collision 
broadening, then the radiation will be increased by a factor of N if the density of 
each new element equals the caesium density. And if the ionization potential of these 
new elements is high enough they will not significantly alter the electron density. That 
is by increasing the total dope density by a factor N we this time obtain N times the 
radiation transfer compared with 2 / N  before. Mathematically this is because in the 
case of added dopes the radiation term is the sum of that of all the different compo- 
nents, whereas in the k s t  case the new radiation term is obtained by substituting the 
new caesium density into the term under a square root sign. Physically the greater 
increase in radiation transfer in the case with added dopes is due to the fact that the 
absorption for each wavelength has approximately the value for the caesium doublet 
which is unchanged, while the total energy emitted is encreased. 

The object of removing the fluctuations of the electron density in an MHD 
generator is to reduce the effective plasma impedance. I t  may be that the plasma 
impedance can be minimized at an optimum dope density, where the radiation transfer 
decreases the fluctuation amplitude while at the same time the increase ir, the damaging 
effects of radiation escape and inelastic scattering is not too large. 

(i) Growth rates in direrent gas mixtures 
The growth rate of the ionization mode was calculated as a function of temperature 

for mixtures of argon and potassium, helium and caesium, and helium and potassium, 
as well as argon and caesium previously considered in detail. The results are shown 
in Fig. 18. We see that for fixed magnetic field the general form of 211 the curves 
is the same. The differences in g between the different gas mixtures are due to the 
differences in the Hall parameter, the electron-heavy particle thermal coupling, the 
radiative transfer, the thermal conduction and the relative importance of coulomb 
and neutral collisions. A detailed description of all the differences would be rather 
complicated, however a brief discussion of the four main differences will be given here. 

First of all, for a given seed, helium as the neutral gas always leads to more 
unstable waves than argon at k e d  electron and gas temperatures. Due to the higher 
cross section for momentum transfer in Helium the value of Po is lower and this tends 
to damp the wave. However the decrease in Bo is accompanied by an increase in the 
Ohmic heating required to produce a given value of Teo - T in the lighter helium, 
since the thermal coupiing between the neutrals and the electrons is proportions1 
to me/m,. Therefore, because the amplifying term in the energy equation is propor- 
tional toj2/oo x /lo (see equation (9)) and the increase in j,”/o exceeds the decrease 
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FIG. 18.-Graph of growth rate vs. electron temperature for various gas mixtures 
(ionization mode). (1) Argon and caesium; (2) argon and potassium; (3) helium 
and caesium; (4) helium and potassium. For all curves:-7' = 1500"K, A = 1 m, 

a = n/4, B = 5-0 tesla, and the seed fraction = 0.001. 

in &, the growth rate for helium is higher than for argon at the same electron and 
g2s temperatures. 

Secondly, for a given neutral gas, potassium has a larger maximum of growth rate 
than caesium. This is similar to the first point since it is due to the fact that, when 
couiomb collisions are important, higher Ohmic heating is required in potassium to 
produce a given difference in the gas and electron temperatures than in caesium. 
Although potassium and caesium have dBerent ionization potentials the peaks of 
g occur at different temperatures, where n, is approximately equal for both gases, 
therefore bo is constant. The reason for the increasej,2/oo is then due to the smaller 
mass of the potassium compared with caesium, since the elastic loss to the ions is 
proportional to m,Imi. But we see that at low temperatures the growth rate for caesium 
can exceed that for potassium and this brings us to the third point, viz. the maximum 
of g for potassium is shifted towards higher temperatures compared to that for 
caesium. The reason for this is simply the higher ionization potential of potassium 
compared to caesium which gives a lower electron density for a given electron tem- 
perature. At lower temperatures the growth is limited by the finite ionization and 
recombination rates and, since these are proportional to n,? their damping effect is 
greater in potassium than in caesium; also at low temperatures neutral collisions 
tend to dominate and the elastic losses are proportional to ne,, therefore, for a given 
Te0 - T, j,"/o, is smaller in potassium than in caesium, while bo is practically 
unchanged. The combination of these effects gives a lower growth rate for potassium 
compared with caesium in the same neutral gas at low temperatures. At high tem- 
peratures the ionization and recombination rates cease to be limiting, and the 
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increasing importance of coulomb collisions causes the difference in the electron- 
heavy particle thermal coupling to decrease since potassium is lighter than caesium; 
also the Hall parameter is now larger for potassium than for caesium (due to the 
lower coulomb collision frequency) and this gives a larger g for potassium at high 
temperatures. Thus, for potassium, the maximum of g is shifted towards higher 
temperatures compared with that for caesium. 

Fourthly, for a given seed, the maximum of g for helium is shifted towards lower 
temperatures compared to that of argon. The reawn for this is that the cross-section 
for momentum transfer is higher for helium than for argon (for helium (QVCHARENKQ, 
1969) qen = 9.7 x 10-20m2), and the Hall parameter at a given temperature is 
therefore lower. This does not give us a lower growth rate for helium, since the ther- 
mal coupling effect due to the different masses dominates; however it does mean 
that the decrease in g due to decreasing Hall parameter at high temperatures starts 
at a lower temperature for helium than for argon. Hence the maximum of g is 
shifted to lower temperatures. 

6 .  SUMMARY 
The analysis of the dispersion relation for electrothermal waves show that there 

are two modes of oscillation, viz. the fast thermal mode, and the ionization mode. 
The fast thermal waves are always damped, while the ionization waves are unstable 
under certain plasma conditions, with maximum growth rates typically between 
lo5 and lo6. This is the previously reported ionization instability and it is a damaging 
instability as far as MHD generators are concerned in that the plasma typically 
spends sec in the generator section; therefore a small disturbance in electron 
density could be amplified by a factor of over 100. 

The calculated dependence of the growth rate on a, Bo and K is in agreement with 
the most recent experimental and theoretical papers. As far as the dependence on 
Te0 is concerned the damping effect of finite ionization and recombination rates at 
temperatures below 2500°K has been demonstrated, while at higher temperatures 
the damping effect of the degree of ionization approaching 1 has been shown not to 
be significant for caesium until temperatures above 5000°K. However for k e d  
magnetic field the growth rate decreases rapidly with increasing electron temperature 
above 2500"K, due to decreasing ,Bo as Coulomb collisions become important, and 
the wave is damped at temperatures above approximately 3000"K, (these tempera- 
tures depend only weakly on the magnitude of B). 

If the radiation transfer in the plasma could be increased by an order of magnitude 
the wave could be stabilized, or at least the growth rate could be substantially reduced. 
Obtaining such an increase however may not be possible without radically changing 
the plasma parameters. 

The frequency of the ionization instability is low (-lo4 c/s at -4. - 1 cm) 
and it is only by virtue of its fast growth rate that we can justify neglecting pertur- 
bations of the neutral gas. At low growth rates (-lo4 l/sec say) this assumption 
must be untenable and sonic effects will have to be included. The sonic effects will 
probably be damping since the expansion of the gas provides a means by which energy 
can be dissipated in the electron density peaks. However this remains to be seen, 
and a unified IOW temperature MHD instability theory, combining the magnetosonic 
and electrothermal effects, is therefore necessary for the evaluation of IOW growth 
rates. 
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