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= specific heat at constant pressure of gas 
= coefficient of thermal conductivity 
= constant of proportionality for Stokes flow 
= constant of order unity in defining Nu 
= characteristic dimension of dust particle 

m — mass flow of gas 
n — mass flow of dust 
Nu = nusselt number 
p = gas pressure 
R = gas constant 
T = gas temperature 
u = gas velocity 
v = dust velocity 
a = ratio of specific heats of gas 
X = mass of individual dust particle 
v = viscosity of gas 
p = gas density 
T = dust temperature 

Subscripts. 
0 = free-stream conditions 
1 = point immediately behind shock 
2 = point downstream of shock where gas and dust are at identical 

velocities and temperatures 
n = normal component of velocity 
t = tangential component of velocity 

THE FLOW of a dusty gas through a shock wave has been 
analyzed by G. F. Carrier,1 who considered a homogeneous 

mixture of a perfect gas and small particles. 
Carrier's analysis considered the conservation equations, 

equation of state for the gas, and the energy-transfer relations as: 

(1) 

l(dr/dt) 2Kk (T - r) 

and when 

mu + nv + p = constant 

%2/2) + (nv2/2) + mcpT + ncr = constant (2) 

\ — pu = constant, pu = mRT (3) 

\v(dv/dx) = 1/2CD12P(U - v)2 (4) 

\cv(dr/dx) = Nu k(T - r)l (5) 

The ratio of Eqs. (4) and (5) gave 

(dr/dx)/(dv/dx) = /3[(T - T)/(U - v)] (6) 

where /3 = 2Kk/c» when Nu ~ KCDRe. Since Eqs. (1), (2), 
and (3) define T and r as functions of u and v, Eq. (6) can be 
written 

driu, v)/dv = p{ [T(u, v) - T(U, V)]/(U - v)} (7) 

Eq. (7) can then be rearranged into the form 

du/dv = [pMu, v) ~ f2(u, v)]/[fz(u, v)] (8) 

When the conditions just behind the shock wave are taken as 
the initial values u = uu and v = u0, Eq. (8) may be numerically 
integrated to determine u(v); similarly, x(v) may be determined 
by integration of Eq. (4). 

Carrier's method may be applied to the two-dimensional 
oblique shock-wave flow if it is assumed that the shock is un­
affected by the dust and if the flow downstream is taken as 
u2 = un

2 -f- ut
2 and v2 = vn

2 + vt
2. The dust-particle drag 

equation may then be written for the normal and tangential 
components of flow as: 

\vt(dvt/dy) = l/2[CD]tPl2(ut - vt)
2 (4a) 

\Vn(dvn/dx) = l/2[CD]nplKun - Vn)
2 ( 4b ) 

Assuming that the flow is in the Stokes region and CD = 
24/Re, the ratio of Eqs. (4a) and (4b), letting vt = dy/dt and 
vn = dx/dt, gives 

vn(dvn/dx) _ dvn 

dvt 

Un — Vn 

vt{dvt/dy) dvt ut — vt 

The heat-transfer equation may be written 

\c{dr/dt) = Nu kl(T - r ) 

Taking ratios with Eqs. (4a) and (4b) 

1 (dr/dt) 2Kk (T - r) 

(9) 

vt(dvt/dy) C/JL (ut — Vt) 

(10) 

(11a) 

Vn (dVn/dx) C[JL (un — Vn) 

These Eqs. then reduce to 

dr/dvt = /3[(r - r)/(ut - vt)] 

dr/dVn = |8[(r - r)/(un - vn)] 

U A D ; 

(12a) 

(12b) 

By solving Eqs. (1), (2), and (3) for r and differentiating, we 
may obtain 

dr/dvn = %[d(u2)/dvn] + <f> 

dr/dvt = £[d(u2)/dvt] + xp 

when £, 0, and \p are functions of u and v. 
Eqs. (12a) and (12b) may then be written 

d(u2) i r 
dvn £ L 

d(u2) _ i r 
dvt Z L 

p(T-r) 

(un — vnj 

(T-r) 

yut — vt) 

»n) J 

(13a) 

(13b) 

(14a) 

(14b) 

When the turning angle of the flow through the shock and the 
free-stream conditions are known, then a set of initial conditions 
for the flow immediately behind the shock is determined since 
[un]o = [vn]i and [ut]o = [vt]o = [ut]i = M i and from Prandtl 's 
equation 

[%]i[%]o V 2a 
RTQ 

1 

+ 1 
[ut]o (15) 

If a relation between un and ut is known or assumed for the 
flow behind the shock, then Eqs. (14a) and (14b) may be solved 
by numerical integration to obtain u{vn) or u{vt). Subsequently, 
vn{x) and vt(x) may also be obtained by a similar process using 
equations (4a) and (4b). The step-by-step numerical values 
obtained in the integration process then constitute an ap­
proximate description of the dusty-gas flow behind an oblique 
shock wave. 
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Constant-Electric-Field and Constant-
Magnetic-Field Magnetogasdynamic Channel 
Flow 

Gordon C Oates 
Department of Aeronautics and Astronautics, 
Massachusetts Institute of Technology, Cambridge, Mass. 
June 5, 1961 

INTRODUCTION 

RECENTLY considerable interest has been shown in the investi­
gation of electrode boundary-layer behavior in crossed-

field accelerators, and simple closed-form solutions for the free-
stream flow have been desired. Kerrebrock and Marble1 ob­
tained a simple solution for the case of constant-temperature 
constant-electric-field flow, which led to nearly-similar boundary-
layer equations.2 

Resler and Sears3 and Wood and Carter4 obtained other 
solutions to the free-stream cases, but these were difficult to 
adapt for boundary-layer work because the velocity variation 
could not be obtained explicitly as a function of the axial co­
ordinate. A further difficulty with these solutions is that they 
require axially varying electric or magnetic fields. 

This note develops a simple closed-form solution for a constant-
electric- and constant-magnetic-field configuration. The solu­
tion allows simple interpretation of the free-stream behavior. 
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ANALYSIS 

The equations for the axial variation of velocity and Mach 
number of Ref. 3 may be written, for the case of constant area, 
in the form 

dV 

dx 

1 *B2 

dM _ 1 + [(T 

dx 

M2 - 1 (m/y)(V/M2) 

1)/2]M2 o-B 

M2 (m/y)(V2/M3) 

(F 3 - V)(V - FO (1) 

(F 3 - V)(V - F2) 

whence 

dV_ 

dM 

V V - Vi 

1 + KY - D/2]M2 M V F2 

(2) 

(3) 

Here, as in Ref. 3, F is the velocity, M the Mach number, 
m the mass flow per unit area, y the ratio of specific heats, 
a the electrical conductivity, B the applied magnetic field, and 
Vi, V2, and F3 are characteristic velocities described in terms of 
the electric field, magnetic field, and Mach number by 

= T ~ 1 E V = 1 + yM2 Fi = E 
1

 7 B' 2 1 + [(7 - 1)/2]M2 2' 3 B 

The assumption of constant electric and magnetic fields 
gives Vi and F3 constant, so that Eq. (3) ma}^ be written 

2 (— - —\ dV V ( V - l\ d m 

\Vi Vj Fi ~ Fi \Vi ) M2 1 

1 

+ [(7 - 1)/2]M2 

Noting that 2 F 2 / F i may be written 
[(7 + D/2]M2 

1 + [(7 - 1)/2]M2 
+ 1, 

this becomes 

L Vi JIM* 2 J Vx Vi \V! /LAf 4 J 
7 + 1 , v 

a — 
2 Vi 

from which 

d 
_v\v, )\M2 2 ) _ 2 Fi 

This may be integrated directly to give 

2_ , y ~ 1 _ y + l Yi 
M2 2 2 F /F i ( 

F ' ~ C (4) 
V/Vi - 1) K ' 

The constant of integration C determines the region of flow 
to which the solution applies, and a particularly simple solution 
is obtained by taking the line which passes through the singular 
point F = Fi, M = 1. In this case C = 1, so tha t we have 

F _ 7 + 1 M? 

7 i = 2 1 + [(7 - D/2\M2 

Substitution of this result into Eq. (1) gives 

d(V/Vz) 2 T 

(5) 

dx 1 m \ Vj 

So that upon integration we find 

V/Vz = 1 - ( l / 7 ) g - (*B*/m) [2y/(y + l)]x 

The other flow properties now follow easily, to give: 

p/Po = If*! + r ( » B V m ) [27/(7 + !)]»I 

(6) 

P/PO = [(7 - D / T ] [ 1 " ( 1 / T ) « - ( ' * 1 / W , , ) ^ / C T + « ] * ] 

To " 1 L 2 ( 7 - 1) 2 
-(<rJBV»0[2Y/(7+ ! ) ] * _ 

1 

2(7 ~ 1) 
Q-(cB*/m) [47 /(7 + l)]« 

7- = (<rE/y)e~{(rB2/m) [27/(7 + D] x 

These simple relations allow easy interpretation of the property 
variations in the accelerator. An interesting result is given by 
the ratio of Joule heating to electric energy input in the free 
stream, which is 

/ ; 
j2/<idx 

/ ; 
jEdx 

1_ 

2y 

This compares with the value 1/(27 — 1) found for the 
"maximum acceleration" case of Ref. 3. 
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Effect of Porosity on the T w o - D i m e n s i o n a l 
Supersonic Sail 

E. A. Boyd 
Department of Aerodynamics, College of Aeronautics, 
Cranfield, England 

June 9, 1961 

T p H E ANALYSIS by Daskin and Feldman1 of the two-dimensional 
hypersonic sail was extended by the present author2 to 

include the effect of the Busemann centrifugal correction to the 
Newtonian pressure law. The author followed this by a study 
of a two-dimensional supersonic sail.3 In each case the sail 
was considered impermeable. The question naturally arises 
as to the effect of porosity on the performance of these sails. 
For the supersonic sail at least the correction is easily calculated 
as follows. 

The pressure difference across the sail (see Fig. 1 for notation) 
is given by 

CPL CPJJ — ( i ) 

where 6f is the local flow deflection, and 

k = 4/VMJ - 1 (2) 

With an impermeable sail, 0/ = 6. 
The porosity allows a flow through the sail from the under 

to the upper surface, which reduces the effective incidence of 
each element of the sail so that the overall lift is reduced. For 
the upward velocity v normal to the surface of the porous sail 
we may write 

v/U = <r[(pL - Pu)/qm] (3) 

where cr is a parameter describing the porosity. For the im­
permeable sail, <r = 0. 

a„=i( 

F I G . 1. 
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