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READERY

¢p = specific heat at constant pressure of gas
k = coefficient of thermal conductivity
ki = constant of proportionality for Stokes flow
& = constant of order unity in defining Nu
| = characteristic dimension of dust particle
m = mass flow of gas
# = mass flow of dust
Nu = nusselt number
p = gas pressure
R = gas constant
T = gas temperature
u = gas velocity
v = dust velocity
a = ratio of specific heats of gas
A = mass of individual dust particle
u = viscosity of gas
p = gas density
7 = dust temperature
Subscripts.
0 = free-stream conditions
1 = point immediately behind shock
2 = point downstream of shock where gas and dust are at identical
velocities and temperatures
n normal component of velocity

-
]

tangential component of velocity

HE FLOW of a dusty gas through a shock wave has been
T analyzed by G. F. Carrier,! who considered a homogeneous
mixture of a perfect gas and small particles.

Carrier’s analysis considered the conservation equations,
equation of state for the gas, and the energy-transfer relations as:

mu + nv + p = constant (1)
(mu?/2) + (nv?/2) + mcpT + ncr = constant (2)
and when m = pu = constant, pu = mRT (3)
N(dv/dx) = 1/2Cpl2p(u — v)? (4)
Nev(dr/dx) = Nu k(T — 1)l (5)

The ratio of Egs. (4) and (5) gave
(dr/dx)/(dv/dx) = BUT — 7)/(u — v)] (6)

where 8 = 2KkE/cu when Nu ~ KCpRe. Since Egs. (1), (2),
and (3) define 7 and = as functions of # and v, Eq. (6) can be
written

dr(u, v)/dv = B{[T(u, v) — (u, v)] /(u — v)} )

Eq. (7) can then be rearranged into the form
du/dv = [Bfi(u, v) — fo(u, v)]/[fs(u, v)] (8)

When the conditions just behind the shock wave are taken as
the initial values # = wu;, and v = u,, Eq. (8) may be numerically
integrated to determine #(v); similarly, x(») may be determined
by integration of Eq. (4).

Carrier’'s method may be applied to the two-dimensional
oblique shock-wave flow if it is assumed that the shock is un-
affected by the dust and if the flow downstream is taken as
u? = uy? + u2 and 22 = v,2 4+ v,2. The dust-particle drag
equation may then be written for the normal and tangential
components of flow as:

No(dve/dy) = 1/2[Cplipl¥(u: — v,)? (4a)
Aeg(dvn/dx) = 1/2[Cplnpl®(tn ~ vn)? (4b)

Assuming that the flow is in the Stokes region and Cp =
24/Re, the ratio of Eqs. (4a) and (4b), letting v, = dy/dt and
v, = dx/dt, gives

v (dvy /dx) _ % _ Un = ©)
v,(dv,/dy) dv, Uy — Vg

The heat-transfer equation may be written

Ne(dr/dt) = Nu k(T — 7) (10)

Taking ratios with Egs. (4a) and (4b)

1 (dr/dt) 2Kk (T — 7)
vldv/dy) e (ue — v0)

(11a)
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1(dr/dt) 2Kk (T — 1)

vn (dvn/dx)  cu (un — va) (1)

These Eqgs. then reduce to
dr/dv, = BT — 7)/(us — v,)] (12a)
dr/dvy = BU(T — 7)/(un — )] (12b)

By solving Egs. (1), (2), and (3) for 7 and differentiating, we
may obtain

dr/dvy, = gld(u?)/dva] + ¢ (13a)
dr/dv; = gld(u?)/dv] + ¢ (13b)

when &, ¢, and ¢ are functions of # and v.
Eqgs. (12a) and (12b) may then be written

aw) 1T, r=0)
dom z[B (tn — n) ¢] (14)
a?) _1f (T —7)

dv, £ I:ﬁ (se — v¢) ¢] (14b)

When the turning angle of the flow through the shock and the
free-stream conditions are known, then a set of initial conditions
for the flow immediately behind the shock is determined since
[#z]o = [vn)1 and [#.]o = [v:]o¢ = [#1 = [v:]; and from Prandtl’s
equation

2 -1
[un)i[unlo = ‘/a : 1 RTy — Z +1 [20] (15)

If a relation between u, and u; is known or assumed for the
flow behind the shock, then Eqs. (14a) and (14b) may be solved
by numerical integration to obtain %(v,) or u(v,;). Subsequently,
vp(x) and v,(x) may also be obtained by a similar process using
equations (4a) and (4b). The step-by-step numerical values
obtained in the integration process then constitute an ap-
proximate description of the dusty-gas flow behind an oblique
shock wave.
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INTRODUCTION

RECENTLY considerable interest has been shown in the investi-
gation of electrode boundary-layer behavior in crossed-
field accelerators, and simple closed-form solutions for the free-
stream flow have been desired. Kerrebrock and Marble! ob-
tained a simple solution for the case of constant-temperature
constant-electric-field flow, which led to nearly-similar boundary-
layer equations.?

Resler and Sears? and Wood and Carter? obtained other
solutions to the free-stream cases, but these were difficult to
adapt for boundary-layer work because the velocity variation
could not be obtained explicitly as a function of the axial co-
ordinate. A further difficulty with these solutions is that they
require axially varying electric or magnetic fields.

This note develops a simple closed-form solution for a constant-
electric- and constant-magnetic-field configuration. The solu-
tion allows simple interpretation of the free-stream behavior.
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ANALYSIS
The equations for the axial variation of velocity and Mach
number of Ref. 3 may be written, for the case of constant area,
in the form
av 1 oB?
dx M2 — 1 (/) (V/M2)

A 14 (v = D2 oB?
dx -1 (/) (VD)

(Vs = VXXV =V (1)

(Vs — VXV — V2)
(2)

whence
ﬂ/, _ 1 Z V-T
AM 14 (v = D22 MV — Ve

(3)

Here, as in Ref. 3, V is the velocity, M the Mach number,
m the mass flow per unit area, y the ratio of specific heats,
o the electrical conductivity, B the applied magnetic field, and
V1, Ve, and Vs are characteristic velocities described in terms of
the electric field, magnetic field, and Mach number by

v—1E . _ L+ M2 T
vy B 7 14 [(v—1D/2]lM 2

V= , Vi =

™| =

The assumption of constant electric and magnetic fields
gives Vi and V; constant, so that Eq. (3) may be written

oY E)dZ_L’(K_l)dMZ 1
vi W owm wm\nm M2 1+ (v — 1)/2]M2
(v + 1)/2102 T,
1+ [(v — 1)/2]M,

Noting that 2V,/ Vi may be written

this becomes

Vo =1 (Y = e -
[le I:H:MZ_!_ 2 i’dV1+V1<V1 >I:M4:|dM
y+1_ V

4d—
2 Vi

from which

V(V 1 vy —1 y+1_ V
il (= -1)(— - i—
[m(m ><M? T )] 2 W,

This may be integrated directly to give

1 y =1 v+ 1 V/Vi—C
e [, 4
M? T 2 2 V/V(V/Vi— 1) )

The constant of integration C determines the region of flow
to which the solution applies, and a particularly simple solution
is obtained by taking the line which passes through the singular
point V= Vi, M = 1. In this case C = 1, so that we have

v v+ 1 M?

Vi 2 1+ (v — 1)/2]M2 )

Substitution of this result into Eq. (1) gives

dV/Vi) _ 2y B 1_1)
dx v +1 m Vs

So that upon integration we find
V/Vs = 1 — (1/y)e= @BYm[2v/&v + Dlz (6)

The other flow properties now follow easily, to give:
P/Py = 1[1 1 o~BYm) 2v/Cr + 1>1z:|
2
olem = [(v = /7101 = (1/y)e™ @B/ 21/t Dle]
T_i4 [L—_V 4 Ly @By G
2

1

—~ = (@BYm) [4y/(y+D)] x]
2(y — 1)

SCIENCES—FEBRUARY 1962

j = (¢E/y)e— (@BYm (2v/(y+ D]z

These simple relations allow easy interpretation of the property
variations in the accelerator. An interesting result is given by
the ratio of Joule heating to electric energy input in the free

stream, which is
f 7%/ odx
0

f jEdx
0

This compares with the wvalue 1/(2y — 1) found for the
“maximum acceleration’ case of Ref. 3.
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HE ANALYSIS by Daskin and Feldman! of the two-dimensional
hypersonic sail was extended by the present author? to
include the effect of the Busemann centrifugal correction to the
Newtonian pressure law. The author followed this by a study
of a two-dimensional supersonic sail.? In each case the sail
was considered impermeable. The question naturally arises
as to the effect of porosity on the performance of these sails.
For the supersonic sail at least the correction is easily calculated
as follows.
The pressure difference across the sail (see Fig. 1 for notation)
is given by

Cpp, — Coy = ks (1)
where 6, is the local flow deflection, and
k=4/VUr—1 @)

With an impermeable sail, §; = 6.

The porosity allows a flow through the sail from the under
to the upper surface, which reduces the effective incidence of
each element of the sail so that the overall lift is reduced. For
the upward velocity v normal to the surface of the porous sail
we may write

v/U = ol(p, — pu)/ga) (3)

where ¢ is a parameter describing the porosity. For the im-
permeable sail, ¢ = 0.

Fic. 1.




