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The model with variable ¢, G, h presented in Ref. 1 is extended to electromagnetism. The entropy
is found to vary like logt and, in a space-entropy representation, the metric is conformally flat.
A new gauge relation is suggested, based on geometrical considerations, which corresponds to a
Rydberg constant varying like R. The Hubble’s law still applies. The age of the universe is
unchanged while its span is found to be half of the Mattig's value. The complete decoding of the
red shift can be done. The distances of the sources are very similar. The large volumic power
densities of distant quasars could have been greatly overestimated, while the increase of their
absolute magnitude, as derived from the classical theory, could be due to the secular variation of
¢. Assuming the electron-proton mass ratio to vary like R, we get a fine structure constant «, a
Bohr radius and a ratio of electromagnetic force to gravitational force which behave like absolute
constants.

1. Introduction

Several authors tried to develop models with physical constants in time varying with
time,2'3:4:3:6.7-8.% None questioned the light velocity ¢, always considered an absolute
constant. If one wants to save the form of the conservation equations, the Einstein’s
constant y = —8nG/c? must be considered as an absolute constant. In such conditions,
if one wants to keep the light velocity ¢ as an absolute constant ¢, and a variable
gravitational constant G, one must add a source term to the field equation (see Ref. 3).
Thus, all these theories imply a constant creation of matter.

In a previous paper! we showed that a variable light-velocity could lead to a
consistent model if both G and the Planck’s constant k followed convenient gauge
relations. Thus, the constant creation of matter was no longer necessary. The extension
of the Robertson-Walker metric to a variable light velocity configuration and its
introduction into the field equation gave a complete set of gauge relations. Let us recall
the main features of the model described in Eq. (1)

1
crx—— T (1)
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m (particle’s mass) & R 2)

h (Planck’ constant) &~ R*? x ¢ 3)

G (gravity constant) ~ 1/R 4

R (characteristic length) ~ t%3 5

V (velocity of a free particle) x R x ¢ )
p (mass density) ~ 1/R? N

mc? = constant. ty]

The following is a short digression on entropy.

2. Time or Entropy?

The relativistic formulation of the velocity distribution function is

m \¥? 1 2k T mc?
= / — 9
f n<27rkT> CK2 <mc2> m €Xp o2 ( )

kT

where m is the rest mass, T the temperature, n the number of density and K, a Bessel
function. If B = ((v*>¥?/c) « 1, then we get the classical Maxwell-Boltzmann velocity

distribution function
3/2
f:n( il ) ™ mUNIKT (10)

2nkT

Let us compute the entropy per baryon, as defined by

s = —;ijflogfdudvdw= —kllog /> (11

where k is the Boltzmann’s constant. We have n & R™*, m ~ R and Rt*3, T = constant
(see Ref. 1), such that

log f =10gA(ﬁ)—logt—#. (12)
p 1=
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Then
s =klogt + H(p). (13)

In the model, § is gauge invariant such that s &~ logt.

In the classical cosmology, the universe is isentropic. One could consider it some-
what paradoxical that such an enormous change in time goes with an almost zero
entropy variation. In the new model, the entropy grows with time. Notice that the BIG
BANG singularity corresponds to s = —co.

Let us now define the entropy through

s = 3/2klogt. (14)
Let us return to the Robertson-Walker metric

du® + u?d6? + u?sin? 0de?

ds? = ¢*dt? — R? 05 (15)
We get
d 2 2d92 2 qin2 0d 2
ds? = RZ{ds2 _e T i _+u§‘)zsm 4 } (16)

In the representation {entropy, space variables}, the metric is conformally flat. From
a cosmological point of view, the entropy (which is invariant with respect to the Lorentz
transform) could be a better choice than time.

In addition, if we describe the universe in a phase space (position plus velocity), we
find that the associated characteristic hypervolume R3c3 varies similarly to 1.

3. The Red Shift and the Robertson-Walker Metric

Consider a radiating object, say a nebula N, , which could be considered as a particle.
Suppose his light is observed on a nebula N, placed at the origin of the co-moving
coordinates. The nebula N is characterized by the value of its time-independent distant
marker {, defined by the relation

_ {du? + u*(d0? + sin? §de?)}
= p _

1+Zu

d¢

(7

2

The light emitted at time ¢, is observed on N, at a time ¢, with ¢, > t,.
The distance between N, and N, is R(t)d{ and is time-dependent, but d{ is not. Light
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travels on a null geodesic

ds* = (dx°)? — R%d¢{* =0,
(18)
x9 dx°

———is an invariant.
w0 RGO)

(=

Consider the light emitted by N, at a corresponding value x? + Ax? of the chrono-
logical parameter. It will be received at x3 + Ax9, where it will be determined through

the relation
x(2’+Axg dxo
J. ={. (19)

xQ+Ax¢ R(xo)

Consider Ax? as the equivalent of the period of some physical phenomenon, the
emission of radiation for instance, taking place on N, and Ax° to be short compared
to the equivalent of the travel time from N, to N, (in terms of the chronological
parameter x°). The periodic phenomenon will appear, as seen from N,, to have a
“period” Ax9 which, from the above relation, will be such that the increment of the 6
integral will be zero.

This, by elementary calculus, gives

Ax3 Ax?
R(x9) R}

(20)

Let us introduce the cosmic time ¢ as defined before through dx° = cdr and write
R(x?) = Ry, R(x9) = Ry, c(x3) = 3, c(x]) = ¢y, then we get

At = R (21)

4. The Problem of Electromagnetism

Now we cannot assert that the energy E(t,), emitted by the atom at time t, would
be identical to the corresponding emission energy E,(t,) of a similar atom, at time ¢,,
in laboratory conditions. The light emission is an electromagnetic process. Everyone
knows that the classical field description, applied to a four-dimensional space time does
not take in charge the electromagnetic phenomenon. To get a complete description of
the universe, gravitation and electromagnetism should be imbedded in a common
geometrical framework. Unfortunately, it has not yet been done in a satisfactory way
so that our work will now lose somewhat its self-consistency. Suppose, for instance,
that the Rydberg constant (ionization energy of hydrogen) would obey simply the
following hypothetic gauge relationship
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E;, ~ Ry. (22)

(Notice that this is a totally arbitrary assumption.) Let us explore the consequences
of it on the red shift decoding. Later we will try to relate it to possible gauge relations.

5. The Red Shift Phenomenon

In the classical description, the red shift z is due to the Doppler effect, plus some
special relativity additional effect. The index 1 refers to the emitter and the index 2 to
the receiver. For a given spectroscopic line, call E; = h,v,,, the emission energy, and
E, = h,v,,, the corresponding emission energy, in today’s lab’s conditions, for the
same line. The light is emitted by an atom at rest at the frequency v, = v,,, corre-
sponding to the wavelength A, = ¢, /v, = 4,,.

Here, v, will be the measured reception frequency, with 4, = ¢, /v, and 4,4 = ¢, /v,,.
The energy of any radiative process will follow the general assumed gauge law (22).

We can define the red shift z:

1. As the ratio between the wavelengths

Az 12 )~1o
1 + 2 == 23
Tao A no’ *)
h 2320} < ~<R1)3/2
hyv20 t2 R, ~

v, (R ) < ) < )v ()

0 \R, ’ 24
U2 R R, (24)
fll_" C1b20 R_ R\ /R, \7!

;‘20 Ca Ulo R, R, = R, ’

_(RaY
1+z—(R1). 25)

then we get

Notice that, for y = 1, we refind the classical model.
2. As the ratio between the frequencies

v, c c
14z =-2withv, = -2 and vy = -2, 2
oy 2T g, B b0 =g 29

we get the same result.
3. As the ratio between the energies
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hyvy0 (Rz)y
l+z=""—a|-=]. 27
hivio R, @

We obtain the same result. The classical relation suggests the choice of y = 1.

6. The Hubble’s Law and the Robertson Walker Metric

Let us expand the function 1/R(t) into a series with respect to

¢ = et —ty)

e 28)
we get
1 1 R, 1(R? Ry,
B 22 222 4 o). 29
RG) R2+R2c2”c%<R2 3 )¢ T o) @9)

In R’ and Rj, the prime denotes differentiation with respect to t. In particular, at
the first order,

2~y R/
z=(5£> —1=02 -9 (30)
R, ¢

Next, expanding the following expressions

2 cdt
f, R

1

£=52»(t2—t1)+<—>,{t2—_2t1—}2+0{(t2—t1)3} (31)

Referring to the first order,
¢,z (2 — PRy, (32)

As a first approximation, the astronomer measures d, =~ R,{, such as

7

CZZ§(2~'}))§—2-d2 (33)
2
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Which is nothing but the Hubble’s red shift law, which still applies in these variable
light velocity conditions. From the measurement of d,, ¢, and z, we can derive the

so-called Hubble’s constant, i.e., the age of universe.
Take R = 3/2c¢t (see Ref. 1).

3 3 dlogc
"= == =c. 34
R 2(c+)tc) 2c<1+t 1 ) ¢ (34)
The age of universe corresponds to
2d
t=(2——y)§42 : (35)
CyZ

A y = 1 value gives the standard model value.

7. The Red Shift and the Distance Evaluation

Let us return to the Robertson-Walker metric, which provides

2 o dt “dw
== 7 (36)
1 (4]

w
1+ kY
TRy

In the classical approach, take the Einstein-de Sitter model (k = 0). We get

2 cdt _ 37
R (37)
With R = ar??, we have
JQL‘”zktéﬂwtm):k LN D R O
LR el T T2 e TR
whence
1
d, = Ryu = 3ct2<1 _ ) (38)
1+z

If z is weak, d, ~ 3/2ct,z; if z tends to infinity, d, tends to 3ct,.
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Of course the Mattig’s formula gives the same result

c
U=—— gz 4(q,— )/ + 2q,z — 1},
RHEE1 T2 {422 + (g2 — 1)/ 4, }

1 4c z 1 57+ 1
=-—-Yy=—\\ - — — =1,
1 =3 RH,(1+2\2 " 2 273
2c 1 2
=—N\1l - ——, d,=Ryu, Hy=-—.
* R2H2< 1+ z) ? 2t 27 3
Let us return to the Robertson-Walker metric, following our model, with k = —1

2
ds? = (dx°)? — eg(XO)‘_l?—abT(drz + r2d6* + r?sin? 8de?),

1 —_
4
we write
b 1 4
m = -3 or b = —-
4 5 arg
ey(x")( 1264
ds? = (dx°)? — *——ar@f—(drz + u?df? + u?sin2 0 de?).
)
< <’o>
Let
16
eg(xo)—‘—l—z—’% = R(t)
Then

(du? + u? d6? + u?sin? 0 do?)
2 _ 2412 _ R2 .
ds* = c*dt 1= )

For radial paths,

2 cdt
cdt~—Ii—4—u—, j C—=Argthu,
. R

=73
1—-u" ],
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£, \? £ \23
c=c¢,|=~) , R=R,|—
2<t \ez)

log(1 + z) = Argthu,

I+2-075
W=—————"""",

1
(1+Z)+(1+z)

3 1+z2?2—1
d, = Ryu=eyt, o t8 — 1
2= Rl = e T

(39)

When z tends to infinity, we refind the horizon (3/2)¢,t,, which is twice smaller than
the standard value 3c,t,.

Notice that this is completely similar to the law giving v,/c (where v, is the radial
velocity) as a function of z, in the standard model.

Let us compare the distances as given by our model and the standard model,

(4271 1
"_U+zf+12_ 2 o

They are similar for weak z values.

8. The Quasars Problem

Quasars correspond presently to z values ranging from 0.13to 4. The diameters of
quasars are estimated from their fluctuation period T. We get a maximum diameter of
c¢T. With respect to the standard approach, this model gives larger values, for ¢ was
larger in the earlier time.

The volumic power is referred to the size of the galaxies. Call Py the absolute power
emitted by a quasar and P the absolute power emitted by a galaxy. The relative power
density of the QSO, with respect to a galaxy, is

Pgso Volume galaxy
(cT)? Pg '

@1

But in our model the galaxies are no longer constant in size. They grow with time.
Suppose the quasar is imbedded in a galaxy. The size of this galaxy will grow like
(1 + z). As such our correcting term, with respect to the standard values for power
density, will involve three effects
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a. change for the distance (they are a little bit closer); b. change for the diameter (due
to the variation of ¢); c. change of the galaxy’s size.
Given Pyso and Py, the coefficient (57) becomes 7' = n¢ with

L “)
T Ar 0+ A+27°
ie.,
1{(1+2?2—-1 1
5 - _{( + 2)2 }2 . (43)

4+ +1) (JSI+z—120+2)7

z n ¢

0 1 1

0.13 1.025 0.606 the closest quasar

0.2 1.03 0.467
0.5 1.048 0.177

1 1.024 0.0463

1.5 0.985 0.0157

2 0.946 0.0063

2.5 0912 0.00296

3 0.882 0.00152
35 0.856 0.000842
4 0.834 0.0005 the most distant quasar
S 0.8 0.000201
6 0.771 0.0001

7 0.75 0.000048S
8 0.731 0.0000275
9 0.71 0.0000162

10 0.7 0.0000102

We see that this correction reduces the absolute magnitude of the observed quasar,
and that this correction increases with z. Thus, if this model is good, the classical model
would have greatly overestimated the volumic power density of quasars. In addition,
the observed increase of absolute magnitude of quasars could be due to the secular
change in ¢. Classically, the galaxies’ span is related to the Jeans’ length, but the model
does not provide any available information about the sizes of some emitting objects
like stars or quasars. It depends on the energy emission process. As we have not defined
a possible gauge relation for the fusion coefficients, we have no available model yet.
Anyway the quasars could grow in time, like galaxies, and the observations tend to
support this hypothesis. That will be examined in more detail in the next paper devoted
to the detailed interaction of the model and available observations.
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9. Associated Gauge Relations

The ionization energy of hydrogen obeys E; = 1/2a?m,c?, where « is the fine struc-
ture constant and m, the mass of the electron. We have assumed that £, ~ Ry with
y = 1, in order to fit with the classical model. (See Egs. (25), (33) and (35).) Introduce
the electron-proton mass ratio = m,/m,,. According to the first paper,! m, ~ m, ~
m = R such that mc? is an absolute constant. Then

a?6 ~ R. (44)

The fine structure constant a and the electron-proton mass ratio é cannot be kept
constant together. We shall consider two possibilities.
9.1. Let us take first 6 ~ constant

Then

2

e
= ~ ./R. 45
¥ Jeghe VR “3)

Introducing the gauge relations for & and ¢, we get: e?/e, = R¥? and the electro-
magnetic force F,,, = e?/4neaR? ~ R™¥2. Then

Gravitational force 1
Electromagnetic force \/ﬁ
which is similar to an old idea of Dirac (Refs. 4, 5).
Let us compute the Bohr radius
h2
4 =—2~ /R. @7)

mmeye

9.2. Now we take o =~ absolute constant

Then m, =~ R? and e*/e, ~ R. The Compton length of the electron h/m,c, the ratio
of gravitational force to the electromagnetic force and the Bohr radius become absolute
constants.

In Refs. (10) to (13) several authors studied the possible variability of several
quantities: o, «*(g,/g.)(m./m,), m./m,, where g, and g, are the gyromagnetic ratios of
the proton and the electron. Following B.E.G. Pagel,'® we have

Approximate 3o upper
Effect Quantity limit to variation
Optical doublet splitting. o 3%

Comparison of optical and
21 cm redshifts. a2(gy/ge)(me/my) 107°

Comparison of hydrogen and
metal redshifts. S =m,/m, 50%




Mod. Phys. Lett. A 1988.03:1733-1744. Downloaded from www.worl dscientific.com
by FLINDERS UNIVERSITY LIBRARY on 01/29/15. For personal use only

1744  Jean-Pierre Petit

As a consequence, we choose the second possibility, with a variable mass ratio.
Notice that in both cases we get g,/g. ~ 1/R.

10. Conclusion

Here we tried to extend the model introduced in Ref. 1 to electromagnetism. A gauge
law was suggested: we assumed the ionisation energy E; (Rydberg constant) to vary
like Ry. Local geometrical considerations recommend the value y = 1, which takes
into account the desonization process during the cosmic evolution. The distance of a
radiative source, as derived from the Robertson-Walker metric, gives results quite
similar to the standard model values, but this new model tends to reduce considerably
the estimated density power of distant sources like quasars. In addition, the increase
of absolute magnitude in z, as derived from the classical model, could be due to the
secular variation in c.

With an electron-proton mass ratio é = m,./m, which varies like R, we get a fine
structure constant o which behaves like an absolute constant.
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