where

\[w = \text{resonance width } (D/3k_0)^t. \]

(8.7)

It is a simple matter to derive the three-dimensional version of these equations. We have purposely kept the analysis simple and somewhat approximate so as not to obscure the underlying physics.

To be sure, the considerations of Secs. VI–VIII are very approximate. However, the purpose is to show in a simple way the origin and the nature of trapping phenomena within the context of Eqs. (5.2) and (6.5). Obviously, it would be desirable to have a more accurate treatment of these two equations, as well as mode coupling effects contained in the nonlinear terms of (5.1).

ACKNOWLEDGMENT

This work was supported by the National Science Foundation under Grant GK-614.

THE PHYSICS OF FLUIDS
VOLUME 9, NUMBER 9
SEPTEMBER 1966

Magnetohydrodynamic Channel Flows with Nonequilibrium Ionization

ARTHUR SHERMAN

General Electric Space Sciences Laboratory, Valley Forge, Pennsylvania
(Received 1 March 1966)

The behavior of a magnetohydrodynamic channel, with finite segmented electrodes, when a plasma in a nonequilibrium state and with tensor conductivity flows through it with constant (uniform) velocity is presented. The nonequilibrium effect is taken into account by assuming the plasma electrical conductivity to be a linear function of the current density. The problem, which is highly nonlinear, is solved by expanding in powers of the proportionality constant to obtain a recursive set of linear equations. In this paper only the zeroth- and first-order solutions are presented. They are obtained numerically. For the cases studied, no shorting due to leakage between adjacent electrodes exists. Despite this inclusion of the nonequilibrium effect causes a reduction of the Hall (axial) electric field.

I. INTRODUCTION

MANY practical situations exist in which it would be desirable to have a nonequilibrium plasma condition in a magnetohydrodynamic channel flow.\(^1\) In general, however, such a nonequilibrium condition is most easily created in a low-pressure plasma (less than one atmosphere) with a strong magnetic field (high induced electric field \(\sim u B\)), so that the Hall effect must be allowed for. As a result, a Hall current will flow axially unless the electrodes are segmented and an axial Hall voltage established. When the segments are finite there is an interaction between the extent of segmentation and the nonequilibrium effect due to the current crowding into one corner of the electrode. It will be the objective of the present work to analyze this current distribution when the electrodes are finite and nonequilibrium ionization is a factor.

A number of authors have analyzed the current distribution in a magnetohydrodynamic channel

any of the above problems, we have proposed to still use the single-fluid theory but now allow the scalar electrical conductivity to be a prescribed function of the absolute magnitude of the current density. The Hall parameter is still assumed constant. Following this formulation, we found the formerly linear problem to be highly nonlinear but were able to solve for the Hartmann-type flow with Hall effect and nonequilibrium ionization. The nonlinearity introduced becomes more severe in the case presently being considered, however, since partial differential equations are involved when channel nonuniformities are included.

Basically, the problem is treated by a perturbation analysis where the plasma conductivity σ is assumed to vary linearly with $[j]$. The proportionality constant is then assumed small and the solution expanded in powers of it. This results in a series of linear partial differential equations (Laplace’s, Poisson’s) which are solved in turn. The solutions are developed numerically due to the unusual boundary conditions required by the Hall effect. Only the zeroth- and first-order cases are carried out in the present paper.

In addition to deriving the current flow patterns for a number of cases of interest, particular attention is paid to the Hall potential. For the Hartmann flow problem it was shown earlier that inclusion of the nonequilibrium effect increased the Hall potential by a very small amount. In the present work, on the other hand, one finds that including this effect produces a notable decrease in the Hall potential. A similar reduction has also been predicted by Kerrebrock for a somewhat different theoretical model.

A complete description of the analysis, numerical results, and a discussion of their significance is presented in the following sections.

II. ANALYSIS

The problem to be considered is the uniform flow of a nonequilibrium plasma through the constant-height channel shown in Fig. 1. In reality the duct is of rectangular cross section, but we assume its extent in the z direction to be infinite and restrict our attention to a two-dimensional problem. Each pair of electrodes (one in the lower wall and the one directly above it) is assumed to be connected to a separate resistive load (generator) or power supply (accelerator). In this way no net current can flow axially due to the Hall effect and a Hall potential will be established. The magnetic field is assumed to be constant and equal to that applied, so that we are assuming the magnetic Reynold’s number to be negligibly small.

Due to periodicity and symmetry we can solve the problem in the region defined by the dotted line in Fig. 1. This region is shown in more detail in Fig. 2 with a sketch of the current distribution added to illustrate the type of results anticipated. Here we have defined the following quantities: c is the electrode width, l is the electrode pitch, and h is the channel height.

The basic equations to be solved are the “generalized” Ohm’s law and Maxwell’s equations, since the flow velocity was assumed to be uniform and constant. It must of course be recognized that the Lorentz forces due to the currents flowing will in fact perturb the flow field. For the present we neglect such flow perturbations and assume they can be evaluated by an iterative procedure. We then write the governing relationships for the non-time-varying case.

Generalized Ohm’s Law

$$i = \sigma(E + u \times B - \kappa(i \times B));$$

(1)

![Fig. 2. Current pattern in vicinity of electrode.](image)
Maxwell's Equations

\[\nabla \times \mathbf{E} = 0, \]
(2)

\[\nabla \cdot \mathbf{i} = 0; \]
(3)

where \(i \) is the current density, \(\sigma \) the electrical conductivity, \(\mathbf{E} \) the electric field intensity, \(\mathbf{u} \) the flow velocity, \(\mathbf{B} \) the magnetic induction, and \(\kappa = 1/en_0 \) the Hall coefficient with \(e \) the charge on an electron and \(n_0 \) the electron density. In Eq. (1) currents due to pressure or temperature gradients have been neglected, and the current has been assumed to be solely due to electron flow so that ion slip has been neglected.

For the two-dimensional problem being considered, and \(u \) and \(B \) constant, we have

\[i_x = \sigma [E_x - \kappa B i_z], \]
(4)

\[i_y = \sigma [E_y - u B + \kappa B i_z], \]
(5)

\[\partial E_x / \partial y = \partial E_y / \partial x, \]
(6)

\[\partial i_z / \partial x + \partial i_y / \partial y = 0. \]
(7)

Solving Eqs. (4) and (5) for \(E_x \) and \(E_y \) and defining a current stream function as

\[i_x = \partial z / \partial y, \quad i_y = -\partial z / \partial x, \]
(8)

we can write

\[E_x = \frac{\partial z / \partial y - \omega \tau (\partial z / \partial x)}{\sigma}, \]
(9)

\[E_y = u B - \frac{\partial z / \partial x + \omega \tau (\partial z / \partial y)}{\sigma}, \]
(10)

where we have defined \(\omega \tau = \sigma \kappa B \). Substituting these in Eq. (6) then yields the equation for \(z \) which must be solved. Thus,

\[\frac{\partial^2 Z}{\partial X^2} + \frac{\partial^2 Z}{\partial Y^2} - \frac{\partial Z / \partial X}{\sigma} \frac{\partial z}{\partial \sigma} + \frac{\partial Z / \partial Y}{\sigma} \frac{\partial z}{\partial \sigma} = 0, \]
(11)

where we have assumed \(\omega \tau \) unaffected by the non-equilibrium ionization although \(\sigma \) is and have defined the following nondimensional variables:

\[Z = \frac{z}{\sigma_0 \mu B c}, \quad X = \frac{x}{c}, \quad Y = \frac{y}{c}, \quad \sigma \tau = \frac{\sigma}{\sigma_0}. \]

The procedure for solution will be a perturbation expansion. To introduce the expansion parameter, we define \(\sigma(|i|) \) as

\[\sigma = \sigma_0 + C |i| \]
(12)

or, in terms of dimensionless quantities,

\[\sigma \tau = 1 + C' (\partial Z / \partial Y)^2 + (\partial Z / \partial X)^2. \]
(13)

Where we have defined \(C' = \mu B \) and written the dimensionless current as \(i / \sigma_0 \mu B \). Now \(C' \) is taken to be our expansion parameter and is assumed close to zero. We can then expand the solution as follows:

\[Z = Z_0 + C' Z_1 + (C')^2 Z_2 + \cdots . \]

Substituting this into Eq. (11) and equating coefficients of each power of \(C' \) to zero, we obtain an infinite set of linear partial differential equations. The zeroth \((C')^0\)-order and first \((C')^1\)-order equations are then

\[\frac{\partial^2 Z_0}{\partial X^2} + \frac{\partial^2 Z_0}{\partial Y^2} = 0, \]
(14)

which is Laplace's equation, and

\[\frac{\partial^2 Z_1}{\partial X^2} + \frac{\partial^2 Z_1}{\partial Y^2} = F(Z_0), \]
(15)

where

\[F(Z_0) = \left(\frac{\partial Z_0}{\partial Y} - \omega \tau \frac{\partial Z_0}{\partial X} \right) \frac{(\partial Z_0 / \partial Y)^2 + (\partial Z_0 / \partial X)(\partial^2 Z_0 / \partial X \partial Y)}{[(\partial Z_0 / \partial X)^2 + (\partial Z_0 / \partial Y)^2]^2} \]

\[+ \left(\frac{\partial Z_0}{\partial X} + \omega \tau \frac{\partial Z_0}{\partial Y} \right) \frac{(\partial Z_0 / \partial X)(\partial^2 Z_0 / \partial X \partial Y) + (\partial Z_0 / \partial Y)(\partial^2 Z_0 / \partial Y \partial X)}{[(\partial Z_0 / \partial X)^2 + (\partial Z_0 / \partial Y)^2]^2}, \]

which is Poisson's equation.

To establish the boundary conditions, we assume \(E_x = 0 \) along an electrode and \(i_y = 0 \) along an insulator. Then

Electrode

\[\frac{\partial Z_0}{\partial Y} = \omega \tau \frac{\partial Z_0}{\partial X}, \quad \frac{\partial Z_1}{\partial Y} = \omega \tau \frac{\partial Z_1}{\partial X} ; \]

Insulator

\[Z_0 = \text{const}, \quad Z_1 = \text{const} ; \]

and the constants \(Z_0 \) and \(Z_1 \) can be different.

To determine appropriate values for \(Z_0 \) and \(Z_1 \), let us consider the total current passing through an electrode,

\[j = \int_{-c/2}^{c/2} i_y(y = 0) \, dx = -\int_{-c/2}^{c/2} \frac{\partial z}{\partial x} (y = 0) \, dx \]

\[= -[z(\frac{1}{2}c, 0) - z(-\frac{1}{2}c, 0)] \]

\[= \sigma_0 \mu B c (Z_L - Z_K) = \sigma_0 \mu B c \Delta Z \].

Now, according to our model the extent of non-
equilibrium ionization depends on the local current density. Therefore, the average current density along the channel center line should be the same for all calculations in order that valid comparisons may be made. The current density near the electrodes will properly depend on geometry, \(\omega \tau \), and \(C' \).

This average current density can be expressed as

\[
\langle I \rangle = \frac{\delta}{l} = \sigma_{0}uBc \Delta Z/l.
\]

Thus, to maintain the desired reference condition, we keep \((\Delta Z)(l/c)^{-1}\) constant at all times.

III. Numerical Solution

Solutions can now be carried out of Eqs. (14) and (15) for several values of the parameters \(l/h \), \(l/c \), and \(\omega \tau \). These will all be valid for any value of \(C' \) as long as \(C' \) is small compared to unity.

To obtain the required constant value of \(\Delta Z/(l/c) \) we select \(\Delta Z_{1} = 0 \) and let \(\Delta Z_{0} \) satisfy the above condition. This choice is essential since \(\Delta Z = \Delta Z_{0} + C'\Delta Z_{1} \), and we could not keep \(\Delta Z \) constant for all \(C' \) unless this choice were made.

Also, to compute \(\varepsilon_{x} \) and \(\varepsilon_{y} \) from the solution obtained in terms of currents, we have

\[
\varepsilon_{x} \equiv E_{x}/uB = (I_{x} + \omega \tau I_{y})/\delta, \tag{16}
\]

\[
\varepsilon_{y} \equiv E_{y}/uB = (I_{y} - \omega \tau I_{x})/\delta + 1. \tag{17}
\]

Finally, Eqs. (14) and (15) were solved numerically by putting them into finite difference form and iterating for the solution on a high-speed digital computer. The singular points at the downstream edge of the electrodes caused some difficulty. To permit a solution in reasonable time, a rectangular finite difference grid was programmed so that a high density of grid points could be located near the singular point. In this way we were able to reduce the grid size sufficiently so that errors in the solution near the singular point had a negligible effect on the solution throughout the bulk of the region of interest. Typically, 600 grid points were involved in the solution for a particular case. To speed convergence and, thereby, minimize the number of iterations we used the "extrapolated Liebmann" method\(^{10}\) to obtain an acceleration factor with which to modify the finite difference formula.

IV. Results

Following these procedures solutions have been obtained for different values of the parameters of interest, where for all cases we have kept \(\Delta Z/(l/c) = 1 \).

\(^{10}\) S. P. Frankel, Math. Tables Aids Comput. 4, 65 (1950).

In Fig. 3 the current streamlines are shown for one particular case. The solid lines are for \(C' = 0 \) and the dotted lines represent the \(C' = 0.1 \) case. In Figs. 4-6 the Hall potential is shown as a function of \(\omega \tau \), pitch to channel height ratio, and pitch to electrode width ratio. Figures 7-9 show curves of channel conductance as a function of the same three parameters. The channel conductance is calculated from the solution obtained in the following way.

\[
\sigma_{\text{equiv}} = \frac{1}{h^2} \int_{0}^{l} (E_{v} - uB) \, dy
\]

\[
= \frac{\sigma_{0}uB \Delta Z/(l/c)^{-1}}{(uBc/h) \int_{0}^{l} \varepsilon_{y} \, dY - uB}
\]

or

\[
\sigma_{\text{equiv}} = \frac{\Delta Z}{(l/h) \left[\Delta \phi_{y} - h/c \right]},
\]

where

\[
\Delta \phi_{y} = \int_{0}^{l/c} \varepsilon_{y} \, dY.
\]

V. Discussion

The current streamlines as shown in Fig. 3 illustrate the typical current crowding at one corner of the electrode due to the Hall effect. When nonequilibrium ionization is also taken into account, we see that this crowding is increased. This is reasonable since the plasma resistance is lowest in the region of highest current density, and current should flow preferentially through the low-resistance regions.

The Hall potentials calculated from our solutions are shown in Figs. 4-6 to always be reduced below what they would have been for a constant conductivity calculation. Note that this result is independent of the value of \(\sigma_{0} \). Thus, nonequilibrium ionization tends to reduce the Hall potential even when
there is no current leakage between electrode pairs. When current leakage does exist, however, there must always be a Hall potential reduction, the only question being of what magnitude. An analysis in which current leakage always exists has in fact been carried out by assuming a uniform high conductivity plasma layer to exist along each wall due to plasma convection from local high-conductivity regions. The main body of plasma is then of uniform lower conductivity. Within this assumption severe Hall potential reductions are predicted. The principal advantage of the uniform conductivity (main body and layers) assumption, from the point of view of the solution of the equations, as can be seen from Eq. (11) is that the equation is linearized. In the present work a Hall potential reduction is predicted without the necessity of choosing an arbitrary layer of high conductivity and, by virtue of this, postulating a current leakage. We might add, however, that our problem if extended to other geometries or values of \(\omega t \) than were chosen here for convenience would also lead to current leakage.

The line corresponding to a constant conductivity and infinitely fine segmentation is included in Fig. 4 to illustrate the severe Hall potential reduction due to finite electrode segmentation alone. Calculations for \(\omega t \) values much higher than one were not carried out due to numerical difficulties. From Fig. 6 we recognize that there's little further gain in reducing the electrode size \([c \to 0, (l/c) \to \infty \) beyond \(l/c = 1.5 \) for the case chosen. There will in fact even be a lowering of the Hall potential when nonequilibrium ionization is allowed for.

In the final series of curves the effective channel conductance is compared to the constant conductivity \(\sigma_p \). Since the average current flowing per unit channel length, however, is constant, one can interpret these curves in terms of the Faraday potential \(E_o \). In other words, a reduction in \(\sigma_{equiv} \) implies an increase in \((E_o)_{equiv} \). Thus, as we can see the Faraday potential will always be larger than its ideal value due to finite electrodes. Physically, this situation exists because of the high-resistance paths caused by the current crowding, and the higher potential needed to achieve a specified current flow. We also see that nonequilibrium ionization

Fig. 4. Average Hall electric field versus Hall parameter for \(l/c = 2, l/h = 2 \).

Fig. 5. Average Hall electric field versus pitch to channel height ratio for \(\omega t = 1, l/c = 2 \).

Fig. 6. Average Hall electric field versus pitch to electrode width ratio for \(\omega t = 1, h/c = 1 \).

Fig. 7. Channel conductance versus Hall parameter for \(l/c = 2, l/h = 2 \).
relieves the situation somewhat. This is misleading, however, since we are comparing the nonequilibrium flow to a constant conductivity flow but at $\sigma = \sigma_0$. Surely, when nonequilibrium ionization exists, σ must be greater than σ_0 everywhere by definition. A more valid comparison could be made if we could make the comparison with a constant conductivity case but use some average $\sigma > \sigma_0$. For the current levels involved in these calculations, we estimate $\sigma \cong 1.03\sigma_0$, so that all the $C' = 0.10$ curves of Figs. 7-9 should be lowered somewhat. The end result is that the nonequilibrium ionization phenomena has little effect on σ_{equiv} or, alternately, the Faraday potential. There is a considerable influence on the Hall potential, however.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge many helpful discussions with Professor Hsuan Yeh and to thank R. Casten and M. Singer for assistance with the numerical solution.

This work was supported by the United States Air Force Office of Scientific Research under Contract AF 49(638)-1609.