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This paper attempts to connect two new gravitational mechanisms: the Verlinde’s holo-
graphic model of gravity and the modification of inertia resulting from a Hubble-scale
Casimir effect (MiHsC) of McCulloch. First we give a short survey about how the holo-

graphic scenario can give the correct dynamics of the universe. The introduction of a
two-holographic screens one comparable to the Hubble horizon and a second screen that
takes into account the contribution of all the matter between the test particle and the
observer gives directly the modified Friedmann acceleration equation for the dynamical
evolution of the universe. Improvements of this equation using the quantum corrections
will realize the inflation at high energy scales and the late-time acceleration (i.e. the
accelerated expansion of the universe nowadays) obviating the dark energy. From both
models we can derive a version of Modified Newtonian Dynamics (MOND) observed
in the dynamics of the astronomical objects obviating the dark matter and explaining
other astronomical anomalies. A first connection between both theories is given at the
end of the paper.

Keywords: Gravitation theory; holographic model of gravity; modified inertia; cosmol-
ogy; dark energy; dark matter.

1. Introduction

In the dynamics of the universe the most important influence is the gravity. Ein-

stein’s classical general relativity is the accepted theory of gravitational interactions

and is the foundation of the modern cosmology. In this theory gravity is intimately

connected with the structure of the spacetime. At high energy scale, i.e. at early time

of cosmological evolution the quantum effects also become important. However, a

satisfactory version of the quantization of Einstein gravity is still not found. String

theory solves some of the problems that appear in the quantization of Einstein

gravity, but not all.

In the ’70s the black hole thermodynamics was developed mainly by Bekenstein1

and Hawking3 and opened the possibility that Einstein gravity may be related with
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thermodynamics giving a possible explanation of the nature of gravity. These devel-

opments brought other problems as the Hawking’s information paradox. Black hole

complementarity was conjectured the solution to the black hole information para-

dox, proposed by Susskind29 and ’t Hooft.30,31 As a consequence of these studies,

’t Hooft proposed the holographic principle which states that the description of a

volume space is encoded on a boundary to the region, preferably a light-like bound-

ary like a gravitational horizon, see Ref. 32. The holographic principle resolves

the black hole information paradox within the framework of string theory. The

cosmological consequences suggest that the entire universe can be seen as a two-

dimensional information structure encoded on the cosmological horizon, such that

the three dimensions we observe are only an effective description at macroscopic

scales and at low energies, see for instance Ref. 2 and references therein.

Verlinde conjecture in a holographic scenario that the Newton and Einstein

gravities are originated from an entropic force arising from the thermodynamics

on a holographic screen, see Ref. 36. In fact early studies in this direction can be

seen in Refs. 14 and 25. The controversy if gravity is fundamental or emergent is

still open. In this sense the most recent works choose one way or the other. Fur-

thermore, in Ref. 12 it is showed that both formulations of Newtonian gravity and

the thermodynamical one, are actually equivalent, but still there does not have a

completely thermodynamical description equivalent to Einstein gravity. However,

in Ref. 37 from the fact that Newtonian gravity is described by a conservative force

Visser establishes some constraints on the form of the entropy and temperature

functions that are not satisfied by the Verlinde’s entropic gravity proposal. There-

fore there are also serious concerns regarding the theoretical viability of Verlinde’s

model.

In Ref. 4 the general relativity is still considered a fundamental theory but in-

cluding a boundary term and the entropic force arises from the contribution of this

boundary term. The model developed in Ref. 4 leads to the current acceleration of

the universe and the inflationary period at early universe, see also Ref. 5. Never-

theless the results of these models do not go beyond those obtained previously with

the addition of a source or boundary term, see Ref. 6 and references therein where

the introduction of the source terms are not completely justified.

In Ref. 38 it was suggested that the universe is accelerating because our CMB ra-

diation (at temperature TCMB = 2.73 K) and thus our universe and the holographic

screen at the comparable Hubble horizon (at temperature TH = ~H
2πkB

∼ 3×10−30 K)

are not in thermal equilibrium and this causes a heat transfer. Moreover, the tem-

perature gap is always very large at early times up to Planck scale. To obtain the

result, in Ref. 38 it is conjectured that the existence of two holographic screens, one

being the approximate Hubble horizon which is similar to the de Sitter (dS) horizon,

while the other is a Schwarzschild horizon. The introduction of this Schwarzschild

horizon is not completely justified in Ref. 38. The classical dynamics of such cos-

mological system can be fixed to obtain thermal equilibrium that corresponds to

the standard FRW universe and the model is able to explain the thermal history
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of our universe. Moreover, the quantum corrections give the entropic inflation at

early universe and the late-time acceleration in a unified approach.

In Sec. 5, we will see a justification for the introduction of the second

Schwarzschild screen. We can also consider the case where gravity is emergent from

basic thermodynamic on a holographic screen (not necessary corresponding to a

Schwarzschild horizon), see Ref. 26. Moreover, with the introduction of a second

screen corresponding to a comparable Hubble horizon, it permits one to arrive at

the same modified Friedmann equations found in Ref. 4 where gravity is consid-

ered fundamental. Consequently the holographic model with these two screens is

equivalent to consider gravity as fundamental and use the Einstein equations of the

general relativity but including a boundary term.

2. Verlinde Holographic Scenario

Verlinde propose a model where the second Newton law and Newton’s law of grav-

itation arise from basic thermodynamic mechanisms. In the context of Verline’s

holographic model, the response of a body to the force may be understood in terms

of the first law of thermodynamics. We consider a holographic screen in the plane

yz that intersects the x-axis at x+∆x, where ∆x is a small increment distance. As

the body approaches the screen, its descriptive information becomes encoded holo-

graphically on the screen. The entropy of the screen increases by some amount ∆S.

In a similar way in which a particle approaching the event horizon of a Schwarzschild

black hole increases the entropy of the horizon, in Ref. 36 it is proposed

that

∆S = 2πkB
mc

~
∆x . (1)

When the body traverse the distance ∆x, its energy changes by an amount ∆E =

F∆x, which is the incremental work done by the force F . Using the first law of

thermodynamics, the model sets that

F∆x = T∆S . (2)

An observer in an accelerated frame experiences the associated Unruh35

temperature

T =
1

2π

~a

kBc
. (3)

The second law of Newton F = ma follows from substituting Eqs. (1) and (3) in

(2). Now it is assumed that the boundary is a closed surface, it is assumed that

is an sphere. Assuming that the holographic principle holds, the maximal storage

space, or the total number of bits, is proportional to the area of the boundary

N =
Ac3

G~
=

4πR2c3

G~
, (4)
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where a new constant G is introduced. The total energy is given by the equipartition

rule

E =
1

2
NkBT . (5)

Now we consider the total energy enclosed by the screen which is given by a mass

M , i.e. it is satisfied E = Mc2. Now equating this equation with Eq. (5) and

substituting Eqs. (4) and (1) we obtain the Newton’s law of gravitation

F = G
mM

R2
, (6)

and the constant G is the universal gravitational constant. From this arguments it

is stated in Ref. 36 the entropic origin of gravity because the acceleration is related

with an entropy gradient.

The derivation of the Einstein equations in the holographic scenario is analogous

to previous works, in particular, Ref. 14. Verlinde in his paper opens the question

about if gravity is still a fundamental force or not. Gravity and spacetime are

emergent phenomena and consequence of the statistical averaged random dynamics

at the microscopic level, an old dream of some physicists as Sakharov, see Ref. 27.

These revolutionary ideas have found many detractors and, in general, the further

works treat the question if gravity is fundamental or not. Other works just studied

the consequences of the proposed model. In Ref. 11 the cosmological consequences

of the holographic scenario in relation with the McCulloch’s modified inertia theory

are analyzed.

3. McCulloch’s Modified Inertia

In 2007, McCulloch proposed a model for inertia that could be called a modification

of inertia resulting from a Hubble-scale Casimir effect (MiHsC) or in the next works

also called Quantized Inertia. MiHsC assumes that the inertial mass of an object is

caused by Unruh radiation (see Ref. 35) resulting from its acceleration with respect

to surrounding matter, and that this radiation is subject to a MiHsC. This means

that only Unruh waves that fit exactly into twice the Hubble diameter are allowed,

so that an increasingly greater proportion of the Unruh waves are disallowed as

accelerations decrease and these waves get longer, leading to a new gradual loss of

inertia as acceleration reduces, see Ref. 15. This loss of inertia is far more gradual

than Milgrom’s in Modified Newtonian Dynamics (MOND), see Ref. 22. In MiHsC

the inertial mass becomes

mI = mi

(

1− βπ2c2

|a|Θ

)

∼ mi

(

1− 2c2

|a|Θ

)

, (7)

where a is the total acceleration of the test particle, β appear in the Wien’s constant

and has the value β = 0.2, and Θ is the Hubble diameter Θ = 2c
H0

= 2RU . The

modified inertia is applied to explain the Pioneer anomaly from the equation
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mIa =
GM⊙mg

r2
, (8)

where M⊙ is the solar mass and r is the distance from the Sun. In particular, in

Ref. 15, it is found that the acceleration of the Pioneer craft is given by

a =
GM⊙

r2
+

βπ2c2

Θ
. (9)

The second term can be rearranged to give

a =
GM⊙

r2
+

1

2
βπ2cH0 ∼ GM⊙

r2
+ 0.99× cH0 . (10)

In a series of works McCulloch applied with success the modified inertia by a Hubble

scale Casimir effect (MiHsC) to several problems and anomalies, see Refs. 16–

20. Moreover, in Ref. 21 the connection between the MiHsC and the MOND is

established and it is proved that the MiHsC predicts a Tully–Fisher relation33 (in a

similar form of MOND v4 = GMa0 with a0 the constant acceleration) of the form

v4 = GM
2c2

Θ
= GMcH0 , (11)

which is in agreement with the observed data taking into account the errors bars.

4. Cosmology Consequences of the Verlinde’s Model

In Ref. 4, taking into account the entropy and temperature intrinsic to the horizon

of the universe due to the information holographically encoded there, it is shown

that we can obviated the dark energy and the accelerated expansion of the universe

is due to an entropic force. The reasoning is the following: At this horizon there is

a horizon temperature given by

TH =
~H

2πkB
∼ 3× 10−30 K , (12)

and this temperature has associated the acceleration aH given by the Unruh35

relationship

aH =
2πckBTH

~
(13)

and substituting the value of TH we arrive at aH = cH ∼ 10−9 m/s
2
in agreement

with the observation. The entropic force pulls outward towards the horizon appar-

ently creating a dark energy component. In Ref. 4 it is stated that the possibility

that the cosmic acceleration can be described by an entropic force should be dis-

tinguished from the idea that gravity itself is an entropic force; although the two

ideas are not prima facie incompatible. However, the deduction of the acceleration

is directly applying the Verlinde arguments to the screen given by the horizon of the
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universe. This can be seen when the principles of entropy and thermodynamics are

applied to show that the model also gives the present fraction of the critical energy

associated with the accelerated expansion (before attributed to the dark energy).

The entropy on the comparable Hubble horizon is given by

SH =
kBc

3A

4G~
=

kBc
3πR2

H

G~
. (14)

The incremental ratio respect to r (the radial variable) is

∆SH

∆r
=

kBc
32πRH

G~
. (15)

Using Eq. (15) and taking into account that RH = c
H

the entropic force is

F = −dE

dr
= −TH

dS

dr
= −c4

G
, (16)

and the pressure exerted is P = F
A
= −2ρcc

2

3
where ρc is the critical energy density

ρc =
3h2

8πG
. Close to the value of the currently measured dark energy in relation with

ρc. However, Eqs. (1) and (15) are similar. To see this we use the following equality

that links the mass of the universe and its radius

GMU

c2RH

= 1 , (17)

obtained in different contexts, see Ref. 8. Using equality (17), Eq. (15) takes the

form

∆SH =
2πkBMUc

~
∆r , (18)

and Eq. (18) is similar to Eq. (1). In fact in one case, Eq. (1), it is being measured

how the entropy increases when the mass m is approaching the screen and in the

other case, Eq. (18), how the entropy increases when the total mass of the universe

MU is approaching the comparable Hubble horizon. Hence the model in both works

is the same but applied to different contexts.

From here the work of Easson, Frampton and Smoot4 takes a different track. For

them the gravitation is still a fundamental force and therefore Einstein’s equation

is modified to take into account the boundary terms that reflect the entropic force

towards the comparable Hubble horizon. This point of view, as we will see, is also

followed by the authors of Ref. 38.

5. The Model of the Dynamics of the Universe

In fact when we talk about the model of the dynamics of our universe we are talking

about the causal connected region of the universe around an observer. Therefore

each observer is talking about its causal connected region which is different from

other observer located in another place. In order to have a simplified notation in

this section we take the convention c = kB = ~ = 1.
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The dynamics of the universe refers to the dynamics of its content (matter and

radiation) in the bulk. In the case of matter, in order to analyze its dynamics we

consider a test particle located at some place p′ of the universe at distance R of

some observed located at p. We consider the causal connected region of the universe

around this observer at p. Then we want to study the forces that act to the test

particle at p′. One entropic force is the FH toward the comparable Hubble horizon.

Now we are going to find the others.

The equations of motion of the dynamic of the universe come from the varia-

tional principle where boundary terms play an important role of the background

evolution. Hence, the Einstein–Hilbert action is

I =

∫

M

(R+ Lm) +

∮

δM

Lb , (19)

where R is the Ricci scalar of the whole spacetime, Lm is the Lagrangian of mat-

ter fields, and Lb is the corresponding Lagrangian describing the physics of the

boundary. The application of variational procedures gives the usual Einstein field

equations for general relativity with and additional surface energy term

Rµν − 1

2
Rgµν = 8πGT µν

m + Jµν
b , (20)

where the term Jµν
b describes the exchange of energy and momentum between

the bulk and the boundary. Now we consider a homogeneous and isotropic flat

Friedmann–Robertson–Walker (FRW) universe described by the metric

ds2 = −dt2 + a2(t)(dr2 + r2 dΩ2) , (21)

where a(t) is the scale factor and the Einstein field equation gives the following

equation for the acceleration of the scale factor

ä

a
= −4πG

3
(ρ+ 3p) +

aH
Lb

, (22)

where Lb is a length scale relevant to the location of the holographic screen. If we

put the values aH = H (recall that we have taken c = 1) and Lb = 1
H

we obtain

(see Ref. 4) that

ä

a
= −4πG

3
(ρ+ 3p) +H2 . (23)

From this equation we obtain that the evolution of our universe would be changed

too much and is hardly able to recover the usual form in radiation and matter

dominated periods. In Ref. 4 the authors suggest to modify ad hoc some coefficients

to better fit the data and introduce and alternative entropic acceleration aH. In

Ref. 38, the value of Lb is taken equal Lb = 1
βH

where β is an undetermined

coefficient which will be constrained by cosmological observations.

In Sec. 5.1 we will present a justification of the introduction of the second screen.
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5.1. The justification of the second screen

First we consider that all the matter–energy content MS in the spherical bulk

around the observer and of radius R is concentrate at the point p (applying the

Gauss’s law) acting to the test particle. Hence, we can consider that in the place of

the observer as if there were a black hole which creates a Schwarzschild horizon at

some radius rS = 2GMS and its corresponding temperature is

TS =
1

8πGMS

. (24)

Hence, on the test particle acts a second entropic force FS toward this Schwarzschild

horizon created by the spherical bulk of radius R between the test particle and the

observer and given by

aS = 2πTS =
1

4GMS

. (25)

The conclusion is that the force is different in each particle because it depends on its

distance R to the observer. For instance consider two particles at distances R1 and

R2 from the observer, respectively, with R1 < R2 then we have that MS1
< MS2

and therefore aS1
> aS2

. The consequence is that as further away the test particle,

the lower the aS and the entropic force FS of the Schwarzschild horizon. This is

what is observed in the universe. The aH is the same for all the objects but aS
decreases with the distance. The conclusion is that any particle is going far away

in an accelerated movement with ae = aH − aS. For a test particle close to the

comparable Hubble horizon, the event horizon has the radius

rS = 2GMU = 2G

∫

MU

ρ dV =
8πGρR3

H

3
=

8πGρ

3β3H3
, (26)

because RH = 1
βH

. In this case its corresponding temperature is given by

TS =
3β3H3

32π2Gρ
(27)

and the modified entropic acceleration is

ae = 2π(TH − TS) = βH − 3β3H3

16πGρ
. (28)

The modified Friedmann acceleration equation is obtained by substituting aH in

(22) by ae and is given by

ä

a
= −4πG

3
(ρ+ 3p) + β2H2 − 3β4H4

16πGρ
, (29)

which is consistent with the data points of SN Ia at low redshift and a good approx-

imation for the high redshift. In Ref. 38 it is considered the case β =
√
2 to have

thermal equilibrium with TH = TS and recover the exact form of the traditional

Friedmann equation

H2 =
8πG

3
ρ

∣

∣

∣

∣

equilibrium

. (30)
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Moreover, in Ref. 38 the higher order quantum corrections for the holographic

entropy and consequently for the entropic force that may rise to an implement

of holographic inflation with an improved accelerate equation (29) are considered.

The quantum corrections to the process of horizon evaporations could bring to a

realization of late-time acceleration. In order to let this acceleration, there is fine-

tuning of the coefficients of higher order. Finally the model is tested with the SN

Ia observations.

The introduction of the second screen, the Schwarzschild horizon is introduced in

order to find a thermal equilibrium. In fact the introduction of this second screen,

in some sense, follows the Verlinde conjecture of the origin of the gravity and

accounts for the entropic force of black holes. If we impose the thermal equilibrium

(choosing β =
√
2), then we must use the quantum corrections to obtain the late-

time acceleration. In fact the nonexistence of thermal equilibrium can give directly

the late-time acceleration via Eq. (23) as is showed in Ref. 4 and also commented

in Ref. 38 but it is hardly able to recover the usual form in radiation and matter

dominated periods. Consequently, Eq. (23) is a first approximation to the correct

equations of the dynamics of the universe. Moreover, the quantum corrections must

be taken into account at low energies to give a better improvement of Eq. (23)

to obtain a better approximation of the late-time acceleration, see Ref. 4. This

quantum correction must also be taken into account at high energies in the early

time of cosmological evolution to implement the holographic inflation, see Ref. 5.

In Sec. 5.2 we consider the case where gravity emerges from basic thermody-

namic on a holographic screen (not necessary corresponding to a Schwarzschild

horizon), see Ref. 26. This holographic screen takes into account the contribution

of all the matter between the test particle and observer and gives directly the

classical Friedmann equation in general relativity (see Eq. (35) below). Moreover,

the introduction of a second screen corresponding to a comparable Hubble hori-

zon permits to arrive at the same modified Friedmann equations found in Ref. 4,

i.e. Eq. (23).

5.2. The Friedmann equation from entropic force

In this section we are going to derive the Friedmann equation governing the dynam-

ical evolution of the FRW universe from the existence of an entropic force together

with the equipartition law of energy and the Unruh temperature. For this purpose

we follow the reasonings given in Ref. 26. As before we consider a test particle at

the point p′ and the observer at point p. We consider the compact spatial region V
given by spherical bulk of radius R between the test particle and the observer, with

boundary ∂V . This sphere of physical radius R = a(t)r where a(t) is the scale fac-

tor. Of course we are considering the FRW universe with metric (21). The compact

boundary ∂V acts as the holographic screen. The number of bits on the screen is

given by (4). Note that there is a factor difference 1
4
from the Berkenstein–Hawking

area entropy formula of black hole. We assume that the temperature on the screen
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is Tν , and according to the equipartition law energy, the total energy on the screen

is given by (5). On the other hand, we have E = Mc2 where M is the mass in the

compact spatial region V . If we assume that the matter source in the FRW universe

is a perfect fluid stress–energy tensor Tµν = (ρ + p)uµuν + pgµν . The total mass

M = ρV in the spatial region V can be expressed as

M =

∫

V

dV (Tµνuµuν) , (31)

where Tµνuµuν is the energy density. The acceleration in the test particle at p ′ (in

fact in any place of the screen) is

ar = −d2R

dt2
= −ä(t)r , (32)

where the negative sign arises because the force is toward the screen. Now according

to Unruh formula this acceleration corresponds to a temperature given by (3). From

here it is straightforward to derive the equation

ä

a
= −4πG

3
ρ , (33)

from Eqs. (3)–(5) and (31). In order to produce the Friedmann equation of FRW

universe in general relativity, we must use the so-called active gravitational mass

M (see Ref. 24), rather than the total mass M . The active gravitational mass is

the called Tolman–Komar mass defined as

M = 2

∫

V

dV

(

Tµν − 1

2
Tgµν

)

uµuν . (34)

Now replacing M by M we obtain the acceleration equation for the dynamical

evolution of the FRW universe given by

ä

a
= −4πG

3
(ρ+ 3p) , (35)

from which we can obtain the traditional Friedmann equation (30). Now the in-

troduction of the screen in the comparable Hubble horizon permits to arrive

unavoidably at Eq. (23) the first approximation to the correct equation for the

dynamical evolution of the universe. In Fig. 1 we see the two screens influencing

the test particle p′. However, the quantum corrections must be taken into account

at low energies to give a better improvement of Eq. (23). These corrections are

introduced to obtain a better approximation of the late-time acceleration and also

to implement the holographic inflation, see Refs. 4, 5 and 38.

6. Entropic Dynamics, Modified Inertia and MOND

As we have mentioned, in Ref. 21 the connection between the MiHsC of McCulloch

and the MOND has been established. Verlinde’s model is also connected with

MOND. In fact Verlinde’s holographic model in an asymptotically de Sitter space

leads to a new form of the second law of motion which is required by the MOND
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Fig. 1. Two screens influencing the test particle p
′.

theory proposed by Milgrom, see Ref. 7. Therefore the phenomenological Milgrom

formulation is supported by both models the holographic scenario and the modified

inertia. In Ref. 7 it is demonstrated that, in a universe endowed by a positive cos-

mological constant Λ, the holographic model described by Verlinde leads naturally

to a modification of the second Newton’s law of the form

m[(a2 + k2)
1

2 − k] = F , (36)

where k =
√

Λ
3
. In our case the positive cosmological constant Λ is given by the

contribution of the boundary terms due to the existence of a screen in the compara-

ble Hubble horizon. If we consider the Einstein field equations for general relativity

with the cosmological constant Λ we have

Rµν − 1

2
Rgµν =

8πG

c4
T µν
m + Λgµν , (37)

which give the modified acceleration equation

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (38)

Comparing with Eq. (23) we obtain that Λ
3
= H2. Moreover, Eq. (36) is identical

to the specific formulation of MOND suggested by Milgrom in Ref. 23. In the limit
a
k
arbitrarily large (36) becomes identical to the Newton second law and for a

k
≪ 1,

we have

m
a2

2k
= F , (39)

where 2k plays the role of the constant acceleration a0 of the MOND theory. Conse-

quently, the MOND observed in the dynamics of the astronomical objects can also

be obtained in the holographic scenario and in the context of the modified inertia

MiHsC obviating the dark matter. In Ref. 9 (see also Ref. 10) it is also showed

1250208-11

M
od

. P
hy

s.
 L

et
t. 

A
 2

01
2.

27
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

O
N

A
SH

 U
N

IV
E

R
SI

T
Y

 o
n 

11
/0

6/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



October 24, 2012 11:4 WSPC/146-MPLA S0217732312502082 12–13

J. Giné

that the Pioneer anomaly can be explained in the context of the MOND theory

and consequently in the context of the holographic scenario. Nevertheless, a simple

derivation of MOND from both models does not save MOND from its inherent

problems, see for instance Refs. 10, 13, 28, 29 and 34.

Verlinde’s model and McCulloch model are based on the Unruh radiation re-

sulting from the acceleration of the observer with respect to surrounding matter.

This acceleration, if the observer describes the movement of a test particle in a

point sufficiently far, is given by the Unruh35 relationship

aH =
2πckBTH

~
, (40)

where TH is the associated temperature. Therefore the total acceleration measured

by this observer is

a = aL + aH , (41)

where aL is the local acceleration due to the local dynamics that suffers the particle.

It is clear that only for very low local movements the acceleration aH becomes

important. We can assume that the local movement is the gravitational attraction

of a central mass like the sun. Therefore we have

a− aH = aL =
GM⊙

r2
. (42)

Equation (42) can be written into the form

a

(

1− aH
|a|

)

=
GM⊙

r2
. (43)

Finally we obtain a modified inertia (in a similar way that in the MiHsC) given by

mI = mg

(

1− aH
|a|

)

= mg

(

1− 2πckBTH

~|a|

)

. (44)

Obviously the TH can be interpreted as the temperature of the horizon comparable

to the Hubble horizon that in the context of the Verlinde’s theory produce an

entropic force.
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