
Chapter 16 

Frohlich's Theory of Coherent 
Excitation — A Retrospective 

T.M. Wu 

16.1 Introduction 

Many biological systems have been extensively studied with regard to their structure, 
function and detailed biochemical and chemical content. However, very little work 
has been done on the effects of microwave electromagnetic radiation on biological 
systems. Such work has recently taken on new importance due to the development of 
novel methods of measurements, which generated widespread reports on suspected 
effects of microwaves on biological systems including membranes, proteins, nucleic 
acids and cells. At the same time, theoretical interpretations have been presented in 
terms of collective excitations in biological systems. 

Most large non-biological, physical systems (such as crystals, atomic nuclei, large 
molecules, spin arrays) which are built up from smaller, more fundamental con
stituents, possess vibrational modes characterized by a coherent motion of many 
constituent parts of the large system. It is likely that biological systems such as cell 
membranes, large biological macromolecules, or intact cells, also possess vibrational 
modes which will couple weakly or strongly to electromagnetic radiation. To illus
trate this, let us consider a cell membrane which, in the simplest model, consists of a 
bilayer of phospholipid molecules interspersed with protein. These macromolecular 
assemblies contain dipolar molecules arranged in such a way as to give rise to an 
ordered array of dipoles. Each dipole is embedded in a complex structure, and it 
is possible that the interaction between the dipole and the underlying superstruc
ture manifests itself in a vibrational excitation. The charge groups of the dipoles 
are displaced relative to each other with some frequency / . The detailed nature of 
this excitation is very complex, involving deformations of the underlying structure. 
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In addition, each dipole also interacts with all other dipoles via electromagnetic 
forces. Other types of interactions mediated by the structure are also possible. The 
net result of these mutual interactions is to spread the frequency / into a narrow 
band and to provide for energy sharing between the individual dipoles. If a par
ticular dipole is perturbed, the perturbation propagates to other dipoles until the 
whole array of dipoles is excited to some collective quantum state, which we will 
call a 'dipole wave' or 'electromagnetic oscillation'. The excitation energy of this 
electromagnetic oscillation is expected to lie in a narrow band close to hf where h 
is Planck's constant. 
Frohlich1"3 has estimated the frequency of the oscillation to be in the order of 
IQ11 Hz. His estimation is based on the relation / = v/A, where v is the velocity 
of sound in organic material and A is the wavelength. If we take v ~ 105cm/sec, 
which is the approximate velocity of sound in water and many organic liquids, and 
A ~ 10~6cm, which is a typical dimension of a large biological molecule, then the 
frequency is equal to 1011 Hz. In general, the expected frequencies are 1010 — 10 u i f z 
for membranes, 1012—1014#z for proteins or more general for certain bond-stretching 
groups, and \&Hz for DNA or RNA molecules. There is a lot of experimental 
evidence in support of the existence of these millimeter waves in biological systems. 
We will only mention a few cases. 

Kiselev and Zalyubovskaya4 have examined the influence of millimeter band electro
magnetic waves on isolated human and animal cells. Their experiments, as all of the 
others described in this section, were performed using low intensity microwaves so 
that thermal effects of irradiation could be excluded. Individual cells were arranged 
in a monolayer readily accessible to microwave exposure. This also facilitated the 
subsequent examination of the effects of microwave exposure. Their results showed 
a decrease in the viability of cells after irradiation at certain electromagnetic wave
lengths (see Fig. 16.1). Within the range 5.9 to 7.5 mm, the wavelength 6.50 mm 
gave a conspicuously higher effect in all three cell lines. The dependence of the 
biological effect on the frequency of the radiation is thus of a resonant nature as 
predicted by Frohlich. 

The studies also indicated that millimeter wave irradiation of isolated cells resulted 
in damage to the cell membrane, the degeneration of protoplasm, an increase in 
the size of the cells and cell nuclei, and an increase in the total nucleic acid and 
albumin contents. All of these effects are specific to the resonant wavelength of 
6.5 mm. Similarly, microwave irradiation of several viruses (such as adenoviruses, 
measles virus, and vesicular stomatitis virus) caused a reduction in the number 
of virus particles by a factor of 2 to 3. The lowered infectious activity of irradiated 
adenoviruses and the measles virus manifested itself in a delay of the cytopathogenic 
effect in a tissue culture. 

Smolyanskaya and Vilenskaya5 studied the effect of millimeter waves on the col-
factor of E. coli. Co/-factor is an extra-chromosomal genetic element whose activity 
is normally repressed in E. coli. The suppression of the col-factor results in the 
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Figure 16.1: Influence of millimeter wave irradiation on survival of tissue cultures. 

synthesis of a proteic substance called colicin, which causes the cells to die. The 
activity of colicin synthesis was determined by using the induction coefficient of 
colicin synthesis, if, = T/JT'> w n e r e ^e and Lc are the number of cells forming 
colicin in the experiment and in the control respectively; Ke and Kc are the total 
number of colicinogenic cells in the experiment and in the control respectively. 

As illustrated in Figure 16.2, the induction coefficient, Ki, of colicin synthesis has a 
strong correlation with certain electromagnetic wavelengths, representing a further 
example of resonance phenomena in biological systems. In Figure 16.3, the induc
tion coefficient is plotted against the power flux density of the radiation. There is 
no noticeable variation in colicin synthesis compared to the control as the power 
fluxdensity increases from zero to 0.01 mW/cm2 (not shown in Fig. 16.3). However, 
when density was raised to above 0.01 mW/cm2 , the induction coefficient increases 
abruptly from 1.0 to more than 3.0, and remains at the same value as the power 
density is further increased. The power flux density at which the induction coeffi
cient of colicin synthesis rapidly increases, ie, 0.01 mw/cm2, can be regarded as the 
energy density threshold for the biological effect. 

Sevast'yanova and Vilenskaya6 also examined the effects of millimeter waves on 
the bone marrow of mice. They counted mouse bone marrow cells that remained 
undamaged by x-rays (700 rad) after prior irradiation with the millimeter waves 
at 10 mW/cm2. The microwave field was turned on 60 minutes before the x-rays. 
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Figure 16.2: Induction coefficient Ki of colicin synthesis as a function of wavelength. 
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Figure 16.3: Induction coefficient of colicin systhesis as a function of power density. 
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Figure 16.4: Variation of the relative number of bone-marrow cells, N/Na, as a 
function of the wavelength of irradiation. N, number of undamaged cells; N0, number 
of cells without radiation. 1, control; 2, X-ray irradiated; 3. X-ray and microwave 
irradiated. 

Despite the fact that microwaves are absorbed in the surface skin layer of the animals 
up to a depth of about 3 x 10~2 cm, they observed a decrease in the number of bone 
marrow cells that were damaged by the x-rays when the animals were pre-exposed 
to microwaves (see Fig. 16.4). 

The protective effect of the pre-exposure of the animals to millimeter waves is 
strongly dependent on the wavelength. The normalized undamaged cell count rises 
from 0.5 to 0.85 at A values of 6.7 - 6.82 mm, 7.09- 7.16 mm, and 7.26 - 7.7 mm, 
whereas no protective effect appeared at the same power density at other wave
lengths. This dependence of protective effects on millimeter wavelength again sug
gests a resonant mechanism for the action of millimeter fields on biological systems. 
In Figure 16.5, changes in the number of bone marrow cells of irradiated animals is 
plotted as a function of microwave power density. The plot shows that pre-irradiation 
of the animals has no influence on undamaged cell count up to a power density of 9 
mw/cm2. Thus, there is a threshold power density below which the millimeter field 
has no effect. As the power density is increased beyond 9 mW/cm2, the normalized 
undamaged cell increases rapidly to about 0.85 and stays almost constant thereafter. 

Grundler et af>8 have observed resonant behavior in the growth of yeast cells exposed 
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20 30 40 50 60 70 
Power flux density, mW/cma 

80 

Figure 16.5: Variation of the relative number of bone-marrow cells N/N0 as func
tion of power density of microwave irradiation, N, number of undamaged cells; N0, 
number of cells without radiation, 1, control; 2, X-ray irradiated; 3, X-ray and mi
crowave irradiated; 4, change in skin temperature as a function of microwave power 
density. 
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16.2. BOSE-EINSTEIN CONDENSATION IN BIOLOGICAL SYSTEMS 393 

to millimeter electromagnetic radiation. They monitored the intensity of a light 
beam which passed through a sample of yeast cells placed in a glass cuvette; as the 
yeast cells multiplied, the transmittance decreased. The growth rate of the sample 
irradiated with microwaves was divided by the rate of a sample not irradiated. The 
ratio obtained showed resonance in the region 41.63 to 41.96 GHz. 

16.2 Bose-Einstein Condensation in Biological 
Systems 

In order to demonstrate the possibility of coherent behaviour in biological systems, 
Frohlich9-13 wrote down rate equations and showed that if energy is supplied above 
a critical rate to the branch or branches of electromagnetic vibration modes, Bose-
Einstein condensation into the lowest energy state occurs. The general forms of the 
rate equations were dictated by requiring a Bose-Einstein distribution for thermal 
equilibrium when there is no energy supplied. Using microscopic theory and pertur
bation calculations, Wu and Austin14"18 were able to obtain the rate equations of 
Frohlich from the Hamiltonian of the biological system under study. 

In this section, we consider a simple model suggested by Frohlich. It is presumed 
that the biological system consists of three parts: (i) the main oscillating units of 
giant dipoles occurring approximately along the length of the macromolecule, (ii) 
the rest of the biosystem constituting a heat bath, and (iii) an external energy 
source which couples to the oscillating units. The interaction between the dipoles 
will produce a narrow band of energy, a;t(u;0 < u;t- < a>mox), which corresponds to the 
normal modes of the electromagnetic vibrations. The heat bath is, of course, a very 
complex system. Interaction with the heat bath will lead to emission and absorption 
of quanta by these oscillating electromagnetic modes, and we consider processes 
involving one and two quanta only. The interaction involves several factors: dipoles 
of water and other molecules, mobile ions, certain electronic degrees of freedom, and, 
to some extent, elastic displacements. 

Instead of rate equations, we will approach this theoretical problem with microscopic 
techniques19 which are used extensively in quantum field theory. To each mode, a;,, 
we assign a creation operator, af, and a destruction operator, at. The normal modes 
of oscillation will interact with the remainder of the biological system (the heat 
bath) which is represented by a set of independent excitation, ft*, associated with 
creation and destruction operators, &£ and 6* respectively. Furthermore, the external 
energy supply, associated with creation operator, pj" and destruction operator p/, 
and excitation energy, 0/, feeds into the electromagnetic oscillatory units and acts as 
impetus for the initiation of the biological effects. The Hamiltonian of the biosystem 
can then be written as: 
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394 CHAPTER 16. FROHLICH'S THEORY OF COHERENT EXCITATION 

H = E w ' ' af a, + E n* K &* + 1 ] •/ P/ P/ 

+ \ E (̂ 6i tf *+*>* tf6*a?)+5 E (*a* a-6* + x* «> tf **) 
tj'A: ijk 

•7 

where <p, x ^^^ * a r e * n e coupling constants for the one quantum process, the 
two quantum process, and the energy source with the vibration modes respectively. 
Strictly speaking, we should consider higher order and possibly anharmonic terms; 
however, it can be shown15'16 that accounting for those terms have only minor ef
fects and, within certain limits, they may be ignored altogether. The electromag
netic oscillations are Bosons. The excitations within the heat bath and the energy 
source can be either Bosons, or fermions, e.g. phonons or electrons. The operators 
a+, a;, bf, 6*, pf and p/ satisfy the commutation relations: 

ai af - af a, = 6^ 
af af - af af = a, a, - a7 a, = 0 

bkbf±bfbk = 6ke (16.2) 
bkK±bebk = b+bf±bfbt = 0 

Pfpf±pfpf = 6f8 

(+ sign for fermions and - sign for bosons). 

The rate of change of the number of quanta in the ith mode is given by 

hi = -[»,., H] = -(m-JST - Hm) (16.3) 

with nt = afai] the number of quanta in the ith mode and H is the Planck's constant 
divided by 2TT. Using the commutation relations in Equation (16.2) and the finite 
Green functions18, the expectation value of the rate of change of the number of 
quanta to infinite order of interactions is 

<hi> = si-*(T,wi)[<ni>e'3ui-(l+<ni>)] (16.4) 

- E A ( r ' w<>wi) [< "• > (1+ < ni >)c"Wi- < n, > (1+ < n, >)e**] 
i 

(16.1) + 
tJK 

if 
4 +?* ti> «.) 
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16.2. BOSE-EINSTEIN CONDENSATION IN BIOLOGICAL SYSTEMS 395 

where the angular brackets refer to the thermal averaging in the grand ensemble 
appropriate to the entire system; Sj = 4TT | ? |2< pfpi > is the energy density 
supplied to the ith mode from the external source, and $(T,w,) and A(T)wj,wJ) are 
given by 

*(T,«t) = 4* | <p |2 e-"w'[l ± Nfa)] (16.5) 

A(T,ui,Uj)=2x\x\2 e"^-<*> \ [l±N(uH-Ui)] 
for Uj > uj{ 

(16.6) 

where N(u) is the number of exitations with energy w in the heat bath, and the plus 
or minus sign corresponds to bosons or fermions respectively. Note that the second 
and third terms in Eq. (16.4) possess exactly the same forms as Frohlich's Ansatze 
for loss rate of the ith quanta in one and two quanta processes respectively. 

For the stationary state, one requires that < hi > = 0. As a result, the average of 
the iih quanta is 

< nt > = 1 + 
Si 

*(T,UH) + EA(r ,w i , W i ) < nj > efi*> 
«*-w) _ i ) - i (16.7) 

where 

Jn _ 1 + £ 
*(T,UH) + E A(r,w,-,w i)(l+ < rij >) 

> 1 (16.8) 

and fi{ is the chemical potential of the ith mode. 
The inequality of Eq. (16.8) together with the requirement that < n, > > 0 dictates 
that u{ > m > 0. Equations (16.7) and (16.8) are exactly the same form as those 
derived by Frohlich. (For details see Appendix I.) If there is no energy supplied, that 
is s = 0, then \i = 0, and Eq. (16.7) becomes the thermal equilibrium distribution 
as required. From Eqs. (16.7) and (16.8), one notices that as s increases, /i will 
increase. When s exceeds a critical value s0, /JL approaches u;0, where u>o is the lowest 
energy in the excitation band. Therefore, a large number of quanta are condensed 
into the lowest energy state. This is exactly the Bose-Einstein condensation in a 
Bose gas system when the temperature is lower than a certain critical value. In our 
case, the corresponding phase transition is not induced by lowering the temperature. 
Rather, it occurs by keeping the temperature constant and increasing the energy 
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396 CHAPTER 16. FROHLICH'S THEORY OF COHERENT EXCITATION 

supply beyond the critical value s0. From Eq. (16.8), it should be noted that when 
A(JT,U>,U;J) = 0, /i = 0. Thus, it is the two-quanta processes that are responsible for 
Bose-Einstein condensation; the larger the A(T,u;tu>j), the greater the effect. 

16.3 One- and Two-Dimensional Cases 

In this section we will use two simple cases to demonstrate the enhancement of 
excitations in biological systems by external stimulation. 

16.3.1 One-Dimensional Case 

Let us consider a linear electric dipolar chain; this could correspond to the long 
chain of a protein, or a DNA chain, etc. Using the Debye model for the phonon in 
the heat bath, we are able to solve the coupling equations, Eqs. (16.7) and (16.8) 
numerically and obtain the values of the chemical potential fi and < n, > as a 
function of the rate of energy supply st. For simplicity as before, we assume st = s, 
for all modes, and the coupling constants $(T,u>t) and A(T,o;i,a;J) are assumed to 
be mode independent. Thus, for a biological system at a stable temperature, these 
coefficients $ and A can be treated as constants. In Figure 16.6, we plot /x/u;0 as 
function of the energy supply rate s using (J0/kT = 0.1 for a constant \ an<l several 
values of <f> for temperature T = 300°K. 

One sees that fi/u0 approaches 1 when s increases to infinity. This clearly shows that 
for the one-dimensional case there is no Bose-Einstein condensation as expected. 
Figure 16.7 shows how the number of excited phonons in the biosystem increase 
with 5. 

Though there is no Bose-Einstein condensation, as s increases, the total numbers of 
the excited phonons in the biosystem is greatly increased. The largest enhancement 
of the phonon excitation in the biosystem occurs in the very low energy modes which 
is just above the lowest energy w0. Therefore, even if there is no phase transition, 
the biological system will be greatly affected due to the enhancement of induced 
phonons when the energy supply rate is sufficiently large. 

16.3.2 Two-Dimensional Case 

The two-dimensional case could correspond to cell membranes. Using the same as
sumptions as in the one-dimensional case, we plot /i/a>0 as a function of s in Figure 
16.8. 

One notices that when s exceeds a certain value s0, (i/u;0 becomes 1. Thus, the phase 
transition surely occurs and the phonon will begin to condense to the lowest energy 
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16.3. ONE AND TWO DIMENSIONAL CASES 397 

0 
0 

Figure 16.6: The normalized chemical potential vs. energy supply rate S for \ = 
0.1, <t>i = 0.05, <j>2 = 0.1 and </>3 = 0.2 respectively. The energy is in u>0 units. 
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398 CHAPTER 16. FROHLICH'S THEORY OF COHERENT EXCITATION 

Figure 16.7: The ratio of the number of enhanced phonons in the biosystem to that of 
the thermal equilibrium phonons vs. energy supply rate S for x = 0.1, </>i = 0.05, fa = 
0.07 fa = 0.1 and </>4 = 0.2. 
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Figure 16.8: The normalized chemical potential vs. energy supply rate S for \ 
0.1, fa = 0.05, fa = 0.1 and fa = 0.2. 
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400 CHAPTER 16. FROHLICH'S THEORY OF COHERENT EXCITATION 

mode as s increases beyond the value of s0. The critical rate of energy supply, s0, 
is strongly dependent on the coupling strengths <j> and \- Note that as the relative 
magnitude between <j> and \ increases, the critical energy supply rate s0 increases. 
This shift to higher critical energy supply can easily be explained as follows. Recall 
that x describes the degree to which the interaction processes channel absorbed 
energy between the different phonon modes in the biosystem and <f> describes the 
tendency of the mode's energy to be channelled to the heat bath. As long as the 
modes have an external energy source, if </> gets larger for a fixed x, then more energy 
will be transmitted to the heat bath and less energy will be retained in the system. 
Therefore, the Bose-Einstein condensation will occur at high energy supply rate s0. 
If s is smaller than s0, there is no Bose-Einstein condensation, but the number of 
excited phonons will increase as s increases, just as in the one dimensional case. 
When s is larger than s0, one expects not only the number of excited phonon to 
increase, but also the system to undergo a phase transition, i.e. a large number of 
the excited phonons in the system will be accumulated in the lowest energy state, 
Wo-

In the examples above, we kept the coupling constant x fixed, and <j> variable. Ac
tually we can change the values of x; the results are similar. The only difference is 
that when x increases, the number of phonons of lower energy will increase faster 
and the phase transition in the two-dimensional case will occur at lower s0. 

The experiments for Stokes and anti-Stokes Ramman spectra has been done by 
Webb et aP°~22 on synchronized active cells of E colt B.The incident microwave of 
frequency f0 will force the dipoles in the system to undergo oscillations and re-emit 
radiation. The spectrum of the oscillation - the Raman spectrum - will be composed 
of three lines. The central line has the frequency of the incident microwave, /0 , and 
is due to Rayleigh scattering. The two shifted lines are the result of Stokes and anti-
Stokes scattering; they will have frequencies of f0 — / and f0 + / respectively. The 
frequency shift is equal to the vibrational frequency / , of the system. Figures 16.9-
16.11 show the spectra taken at 40, 50, and 60 min. respectively after incubation. 

Note that the line near 120 cm"1 range between 118 and 125 cm"1. The experimental 
value of the ratio of the intensities anti-Stokes and Stokes is between 0.9 to 1. The 
theoretical value of this ratio is given by n/( l + n)22, where n is the excitation 
number. At these frequencies and at room temperature, the thermal equilibrium 
distribution nT is smaller than one; this gives values between 0.55 and 0.57 for 
the ratio of anti-Stoke and Stoke intensities. However, these values are much too 
small compared to the values obtained experimentally. In order for the ratio of these 
intensities to approach 1 as shown in the experiments, it is required that the number 
of excitation, n, should be much larger than 1. Thus, the Stokes and anti-Stokes 
lines in the active cell spectra may arise from a condensation or enhancement of 
the excited phonons in the biosystem induced by the energy supply from metabolic 
processes. 
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Figure 16.9: Stokes and anti-Stokes Raman spectra of synchronized active cells of E. 
coli B bacteria, taken at 40 min. after incubation.  B
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Ww vUw U w W v ^ 
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Figure 16.10: Stokes and anti-Stokes Raman spectra of active cells ofE. coli bacteria, 
taken at 50 min. after incubation. 
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Figure 16.11: Stokes and anti-Stokes Raman spectra of active cells ofE. coli B bac
teria, taken at 60 min. after incubation. 
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16.4. TIME THRESHOLD FOR BIOLOGICAL EFFECTS 403 

16.4 Time Threshold for Biological Effects 

Frolich's model has been particularly useful in understanding recent experiments 
revealing the effects of low level microwaves on various biological systems. One im
portant general characteristic reported in these experiments is the existence of a time 
threshold for the initiation of the differing biological effects. Recall Sevastyanova and 
Vilenskaya's experiment6 involving the simultaneous irradiation of mice bone mar
row cells. The time threshold for a protective effect was 30 minutes of microwave 
exposure. On the induction coefficient of colicin synthesis5, they also found that a 
minimum irradiation time is needed to produce measurable biological effects, again 
of the order of 30 minutes. The threshold will depend on the particular biological ac
tivity being monitored as well as the temperature. An example of the latter is clearly 
demonstrated in Smolyanskaya and Vilenskaya's experiment on E coli. Irradiation 
for 30 minutes at 20° produced no change in the rate of colicin synthesis, whereas 
at 37°, colicin synthesis increased. Therefore, it is expected that the analysis of the 
time threshold will not be a trivial matter. Both the detailed microscopic structure 
of the biological system and its thermodynamic behaviour must be considered in 
order to provide a full understanding of the specific time thresholds encountered for 
different biological systems. 

Using Frohlich's model, we intend to obtain an approximation for a segment of this 
time threshold.23 In applying the Frohlich hypothesis, one sees that the biological 
effects cannot begin until condensed phase occurs. It has not been determined how 
long this condensation has to be maintained in order to produce biological effects. 
Generally, the time needed to initiate biological effects will consist of two parts, 
T\ and T2. T\ represents the time from the beginning of irradiation to the onset 
of condensation; r2 represents the time elapsed from the onset of the condensed 
phase to the production of the actual biological effects. Thus, the total time, r, 
elapsed before biological effects occur from the initiation of irradiation, is given by 
r = T\ + r2 In the following analysis, we will evaluate T\ using the Hamiltonian given 
in Equation (16.1). T\ represents the minimum time required for the biological system 
to exhibit effects after irradiation and is the lifetime of the collective excitations in 
the biological system. An explicit form of r2 requires an in-depth biochemical analysis 
of the particular system under scrutiny and is beyond the scope of the present study. 
However, r2 represents an important part and should be studied in future. 

As mentioned in the previous section, the heat bath is a very complex system. The 
excitation modes in the heat bath can be either Bosons or Fermions. For simplicity, 
we will only consider the case that the excitations in the heat bath are also Bosons 
and only to the first order in interaction. This method can also easily be extended 
to other kinds of excitations. The lifetime of rx is given by the relation 
n = h/ | 7mE | wherelmE is the imaginary part of the self-energy of vibration 
mode in the energy band. 

It should be noted that the lifetime (and thus the self-energy) of interest is due 
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404 CHAPTER 16. FROHLICH'S THEORY OF COHERENT EXCITATION 

to terms with coupling constants x and x* because these terms are responsible 
for creating the condensed phase. The rest of the terms in the Hamiltonian do not 
contribute to the condensation in the lowest order of coupling constant and therefore 
are not relevant to the present calculation. 
Using the finite temperature Green's function, the self- energy, E(p,o;t) for the bio
logical system phonon associated with operator a,- and af yields 

£foM*)=lx | 2E 
1 + n(ftPi) + n(u>Pi-Pj) n(flPi) - n(u)Pi.Pj) 

- to* - "Pi-Pi + i S "Pi + n p ; - "Pi-Pi + i8\ 
(16.9) 

where n(u;) = (e^-l)""1 , Slp is the energy of a phonon with momentum? in the heat 
bath and up is the energy of a phonon with momentum p in the biological system. At 
room temperature, these energy bands are much smaller than &T, therefore n(uPi) 
and n(ftPi) are much larger than 1. Also, ftp> = ±(uPi - wPi-Pi) is smaller than the 
width of the narrow energy band of biological system under consideration, which in 
turn is smaller than a typical energy in the set of vibration modes (i.e., ilPj < up). 
Thus, n(ilPj) > n(uPi-Pj). Therefore, the self-energy can be approximately written 
as 

Vr \ = l2LL f1
 d rfWf l 

2^wup> 4W2hp J x
 XJQ ftp, ^ - n ^ - c - w + i* 

+—To"" T*) (16-10) 
Wp + ilp — Up-? + t d / 

where the summation over heat bath momenta has been converted to an integration. 
Using the Debye model for the excitations in the heat bath, Qp> = v'j/, where v1 the 
velocity of sound in the heat bath. 

The form of the dispersion relation for the biological system is unknown at present 
and depends in an intricate manner upon the biological structure. However, to obtain 
an approximate result, it is assumed that u>p—u;p_p/ = ± 7 A where A is the width of 
the energy band which is very narrow and 7 is a positive quantity less than 1. The 
value of 7 depends on the form of the dispersion relation for the biological system. 
The real part of self-energy in Eq. (16.10) is impossible to evaluate without knowing 
the form u>p. Fortunately we are only interested in the imaginary part which can be 
obtained easily from Eq. (16.10) as 

""S- l"l !^ <KU1> 
Therefore, the lifetime T\ becomes 
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16.5. LONG RANGE INTERACTION 405 

n = TrfcV3/ | x |2 -ykTA (16.12) 

which is inversely proportional to the temperature T and to the square of the cou
pling constant. Thus, as the temperature is raised, the condensed phase should occur 
sooner, in turn causing the biological effects to begin sooner. This agrees, at least 
qualitatively, with Smolyanskaya and Vilenskaya's experiment where changing the 
temperature from 20° C to 37° C brought the biological effects into play, while holding 
the irradiation time fixed at 30 minutes. 

The 7i given in Eq. (16.12) represents the irradiation time needed to produce the 
condensation and is the minimum time needed to produce biological effects. In or
der to apply this equation to specific circumstances, model studies and more experi
ments need to be performed to obtain expressions for the coupling constants and the 
dispersion relations in the energy bands. Given this information, a more complete 
understanding of the Frohlich model and all its implication can be obtained. 

16.5 Long Range Interaction 

Further understanding of cooperative behavior of biological systems requires the 
development of models which represent the specific biological substance being ana
lyzed. This is a difficult but very important problem which should be investigated 
carefully in order to understand the implications of the theory and make meaning
ful experimental comparisons. As an example, consider two biological systems at a 
distance R, larger than their linear dimensions, capable of giant dipole vibrations 
with frequencies / i and / 2 respectively (assuming / i > / 2 ) . Through the coulombic 
interaction of these giant dipoles, the combined system then has two normal modes 
/ + and /_ which can be expressed as3, 

fl = \{fl + fl) 1 ± [A2 + — Y 2 | (16.13) (-01 
and 

^=f̂ f>0 (16-14) 
1/2 f be*Zlz2 \ 

where e± is the dielectric constants; zi, z2 are the numbers of the bound ions of 
charge e;Mi,M2 are the molecular masses; and b is a numerical constant of order 
unity but depends on various angles. The interaction energy, U, is defined as the 
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406 CHAPTER 16. FROHLICH'S THEORY OF COHERENT EXCITATION 

difference in the free energy F at a distance R from its value at R going to infinite. 
The interaction energy is then given as 

U± = F±(R) - F±(oo) 
= n±h[f±(R)-f±(oo)] (16.16) 

(i±y^Tiv4)12--(i±A)1 \ll2 

where n± is the number of quanta of the coherently excitated state. If f\ ^ /2 , and 
at sufficient large distance, then B2 < A2. Using Equations (16.14) and (16.15), we 
find that 

Thus U± is proportional to R~e, i.e., the interaction is short range regardless of 
which coherent state. 

However, if / i == / i , then 

U± = ±^{f1+f2)la±^ (16.18) 

In this case of near resonance, the interaction has very long range. The interaction 
is attractive for the lower frequency /_ and repulsive for the higher frequence / + 

respectively. 

The long-range interaction from the above discussion may have considerable biologi
cal significance. Many biological processes depend on a certain molecule 'recognizing' 
another molecule. An enzyme and its substrate(s) must interact in a very specific 
manner both spatially and temporally. A similar situation exists for the antibod
ies of immune systems; antibodies must distinguish whether a molecule is foreign 
or belongs to the host. The fundamental biological question is "How does an en
zyme or antibody recognize its own very specific target against the enormously high 
background found in living systems?" Each of these biological molecules can be con
sidered as a unique entity, each with its own characteristic frequency or frequencies. 
How these molecules interact with each other may be governed by the state of the 
biological system. One notices that if the system condenses into /_ state, then the 
interaction is attractive; conversely, if the system condenses into /+ state, then the 
interaction is repulsive. This provides a possible mechanism by which an enzyme 
or antibody can distinguish its target from other molecules. It is possible that the 
biological system can control which way it will condense into by supplying sufficient 

(16.17) U±: ■
 n±h

(t2 
+ j2) eiA*{l± 
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16.6. APPENDIX 407 

chemical energy to one normal mode of the vibration or the other. It can also be 
perturbed by external microwave radiation which acts by pumping energy into one 
or the other normal mode of the oscillation. 

16.6 Appendix 

The Bose-Einstein condensation in biosystems can be demonstrated explicitly as 
follows: summing over j in Equation (16.4) and set < n, > = 0 for stationary state, 
one gets 

S = £ Si; = J2 *(T'W0 [< n« > ^ - ( 1 + < n« >)] (16'19) 
» * 

On introducing the excess m, over the thermal equilibrium distribution < nt- >T 

< m > = < m >T +mt-, < rii >T= (e0u,i - l )"1 (16.20) 

we obtain 

5 = £ A(T)W,><(e,Ju'i " 1) < Nitmax(e^ - 1) (16.21) 

where 

N = ^mi (16.22) 

and $maX is the largest of the $(T,a;t). Thus we have a lower limit of the total 
number N of excess quanta, which increases proportionally to the total rate of 
supply of energy. Using Eq. (16.8) and Eq. (16.20), Eq. (16.7) can be written as 

< nt > = 
1 - c - ^ 

1 + «M • E A ^ ^ ^ m ^ - l ) 
(e/?(u/.-*) _ i ) - i (16.23) 

We now consider the simple case such that all $(T,o;t-) are equal to $, and all 
A(T,a;t,u;t) are equal to A. Equation (16.19) with Equation (16.20) then becomes 

S ^ X ^ 6 ^ - 1 ) (16.24) 

From Eq. (16.8), it follows that all /zt- are equal to fi such that, 

 B
io

el
ec

tr
od

yn
am

ic
s 

an
d 

B
io

co
m

m
un

ic
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

B
IR

M
IN

G
H

A
M

 L
IB

R
A

R
Y

 -
 I

N
FO

R
M

A
T

IO
N

 S
E

R
V

IC
E

S 
on

 0
4/

22
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



408 CHAPTER 16. FROHLICH'S THEORY OF COHERENT EXCITATION 

u0 > I* > 0 

Eq. (16.23) for < n, > then becomes 

< n, > = 1 + * 
1 - e"^ 

A E m ^ - 1 ) 
(e' fi(u>i-v) _ j \ - l 

(16.25) 

(16.26) 

or making use of Eq. (16.24), < nt > becomes 

-0/i (e0to-M _ i ) - i <n;>=[l + §i(l-< 
Using Eqs. (16.20), (16.21), and NT = £ < n, > T , we find 

N + JVT = = £ [l + | | ( 1 - e-^)] ( ^ - " > - l )"1 

Substituting s, by 5 and y, by u;0, and because st < S, p < u;0, we obtain 

7V + JVT< l + J(l-e-<*") » « * w,-u»0) __ 
I ) - 1 

(16.27) 

(16.28) 

(16.29) 

In the particular case where the energy supply «j to all modes is the same, 5 = ZS{, 
where z is the number of states in the energy band, then Eq. (16.28) becomes 

N + NT = l + ±(l-e-*.) 1 

V **!{?(<* - fOl ~ ! 
(16.30) 

The dependence of both Eqs. (16.29) and (16.30) on S is implicit through p only. 
Furthermore, N increases with increasing energy supply 5, as seen from Eq. (16.21). 
One also notices that, by Eqs. (16.7) and (16.8), when S has surpassed a critical 
value S0, fi approaches u0. Therefore, in both Eqs. (16.29) and (16.30), N becomes 
very large, as a large number of quanta are condensed into the lowest energy state. 
This is exactly the Bose-Einstein condensation in a Bose gas when the temperature 
is lower than a certain critical temperature. In our case the corresponding phase 
transition is not by lowering temperature but is enforced by increasing the energy 
supply beyond the critical value So and keeping the temperature constant. 
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